Observing Convective Aggregation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06-28

AUTHORS

Christopher E. Holloway, Allison A. Wing, Sandrine Bony, Caroline Muller, Hirohiko Masunaga, Tristan S. L’Ecuyer, David D. Turner, Paquita Zuidema

ABSTRACT

Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network. More... »

PAGES

1199-1236

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10712-017-9419-1

DOI

http://dx.doi.org/10.1007/s10712-017-9419-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090284122

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31997841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Meteorology, University of Reading, RG6 6BB, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Department of Meteorology, University of Reading, RG6 6BB, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holloway", 
        "givenName": "Christopher E.", 
        "id": "sg:person.01231233510.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231233510.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth, Ocean and Atmospheric Science, Florida State University, Mail Code 4520, PO Box 3064520, 32306-4520, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, PO Box 1000, 10964-1000, Palisades, NY, USA", 
            "Department of Earth, Ocean and Atmospheric Science, Florida State University, Mail Code 4520, PO Box 3064520, 32306-4520, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wing", 
        "givenName": "Allison A.", 
        "id": "sg:person.014166322421.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166322421.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University, LMD/IPSL, CNRS, Univ Paris 06, mailbox 99, 4 Place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Sorbonne University, LMD/IPSL, CNRS, Univ Paris 06, mailbox 99, 4 Place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "Sandrine", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LMD/IPSL, CNRS, \u00c9cole Normale Sup\u00e9rieure, Paris Sciences Et Lettres, 24 rue Lhomond, 75230, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "LMD/IPSL, CNRS, \u00c9cole Normale Sup\u00e9rieure, Paris Sciences Et Lettres, 24 rue Lhomond, 75230, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muller", 
        "givenName": "Caroline", 
        "id": "sg:person.016356644021.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356644021.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masunaga", 
        "givenName": "Hirohiko", 
        "id": "sg:person.010736532755.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736532755.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, 1225 West Dayton Street, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, 1225 West Dayton Street, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u2019Ecuyer", 
        "givenName": "Tristan S.", 
        "id": "sg:person.012675333041.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675333041.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NOAA/Earth System Research Laboratory, Global Systems Division, 325 Broadway, 80305-3337, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.423024.3", 
          "name": [
            "NOAA/Earth System Research Laboratory, Global Systems Division, 325 Broadway, 80305-3337, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turner", 
        "givenName": "David D.", 
        "id": "sg:person.015065255415.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065255415.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, 33149, Miami, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.26790.3a", 
          "name": [
            "Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, 33149, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuidema", 
        "givenName": "Paquita", 
        "id": "sg:person.01154327440.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154327440.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053001139", 
          "https://doi.org/10.1038/nphys314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053597550", 
          "https://doi.org/10.1038/nature14339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/326483a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051941906", 
          "https://doi.org/10.1038/326483a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-017-9408-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083887659", 
          "https://doi.org/10.1007/s10712-017-9408-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050446527", 
          "https://doi.org/10.1038/nature05834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010613677", 
          "https://doi.org/10.1038/ncomms7591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30183-4_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045110334", 
          "https://doi.org/10.1007/978-3-642-30183-4_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031423891", 
          "https://doi.org/10.1038/ngeo2398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015288292", 
          "https://doi.org/10.1038/ngeo2414"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-28", 
    "datePublishedReg": "2017-06-28", 
    "description": "Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10712-017-9419-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.12915359", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3848471", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6143359", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3487026", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5493737", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051934", 
        "issn": [
          "0169-3298", 
          "1573-0956"
        ], 
        "name": "Surveys in Geophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "convective aggregation", 
      "ground-based observational network", 
      "observational work", 
      "convective clustering", 
      "tropical phenomena", 
      "convective clusters", 
      "radiosonde records", 
      "convective organization", 
      "observational network", 
      "model simulations", 
      "satellite approach", 
      "driest regions", 
      "atmospheric humidity", 
      "climate change", 
      "model discrepancy", 
      "realistic representation", 
      "time scales", 
      "convection", 
      "observational comparison", 
      "humidity", 
      "initial conditions", 
      "extremes", 
      "variability", 
      "boundary conditions", 
      "initiation process", 
      "Nauru", 
      "records", 
      "numerical simulations", 
      "new findings", 
      "simulations", 
      "broad distribution", 
      "important insights", 
      "channel simulation", 
      "region", 
      "rich history", 
      "scale", 
      "conditions", 
      "distribution", 
      "discrepancy", 
      "process", 
      "diverse range", 
      "comparison", 
      "history", 
      "changes", 
      "geometry", 
      "direction", 
      "spontaneous organization", 
      "range", 
      "model", 
      "recent work", 
      "understanding", 
      "insights", 
      "phenomenon", 
      "work", 
      "results", 
      "differences", 
      "representation", 
      "study", 
      "terms", 
      "possible future directions", 
      "network", 
      "clusters", 
      "approach", 
      "aggregation", 
      "homogeneous boundary conditions", 
      "interest", 
      "clustering", 
      "questions", 
      "need", 
      "future directions", 
      "categories", 
      "findings", 
      "square geometry", 
      "literature", 
      "organization", 
      "observations"
    ], 
    "name": "Observing Convective Aggregation", 
    "pagination": "1199-1236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090284122"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10712-017-9419-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31997841"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10712-017-9419-1", 
      "https://app.dimensions.ai/details/publication/pub.1090284122"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10712-017-9419-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10712-017-9419-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10712-017-9419-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10712-017-9419-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10712-017-9419-1'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      110 URIs      93 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10712-017-9419-1 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N623f86d8667a4638a971fbce5ea5eaa1
4 schema:citation sg:pub.10.1007/978-3-642-30183-4_49
5 sg:pub.10.1007/s10712-017-9408-4
6 sg:pub.10.1038/326483a0
7 sg:pub.10.1038/nature05834
8 sg:pub.10.1038/nature14339
9 sg:pub.10.1038/ncomms7591
10 sg:pub.10.1038/ngeo2398
11 sg:pub.10.1038/ngeo2414
12 sg:pub.10.1038/nphys314
13 schema:datePublished 2017-06-28
14 schema:datePublishedReg 2017-06-28
15 schema:description Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N256b7ba1e6714a98b90af6ef7caf0ead
19 Nfe2e16e6fc3b40b4b2810da5d38bc42f
20 sg:journal.1051934
21 schema:keywords Nauru
22 aggregation
23 approach
24 atmospheric humidity
25 boundary conditions
26 broad distribution
27 categories
28 changes
29 channel simulation
30 climate change
31 clustering
32 clusters
33 comparison
34 conditions
35 convection
36 convective aggregation
37 convective clustering
38 convective clusters
39 convective organization
40 differences
41 direction
42 discrepancy
43 distribution
44 diverse range
45 driest regions
46 extremes
47 findings
48 future directions
49 geometry
50 ground-based observational network
51 history
52 homogeneous boundary conditions
53 humidity
54 important insights
55 initial conditions
56 initiation process
57 insights
58 interest
59 literature
60 model
61 model discrepancy
62 model simulations
63 need
64 network
65 new findings
66 numerical simulations
67 observational comparison
68 observational network
69 observational work
70 observations
71 organization
72 phenomenon
73 possible future directions
74 process
75 questions
76 radiosonde records
77 range
78 realistic representation
79 recent work
80 records
81 region
82 representation
83 results
84 rich history
85 satellite approach
86 scale
87 simulations
88 spontaneous organization
89 square geometry
90 study
91 terms
92 time scales
93 tropical phenomena
94 understanding
95 variability
96 work
97 schema:name Observing Convective Aggregation
98 schema:pagination 1199-1236
99 schema:productId N14a521d39ac2407ba47fcfb6c81541fc
100 N581e3c0c1e1c45a0ab4bf48bd674e70f
101 Ncae1879cb632403a8d487725ccc0c64e
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090284122
103 https://doi.org/10.1007/s10712-017-9419-1
104 schema:sdDatePublished 2022-12-01T06:36
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N0b7128e633f84a3da9410e9b8d19d37b
107 schema:url https://doi.org/10.1007/s10712-017-9419-1
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N0b7128e633f84a3da9410e9b8d19d37b schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N14a521d39ac2407ba47fcfb6c81541fc schema:name doi
114 schema:value 10.1007/s10712-017-9419-1
115 rdf:type schema:PropertyValue
116 N203c63bb19e54ea69b21566c1438f9d7 rdf:first sg:person.01154327440.44
117 rdf:rest rdf:nil
118 N2211b0c00afe48c8b871ba5fcfd24a84 rdf:first sg:person.013647160343.22
119 rdf:rest Nb8b848df8be8441ca82412c2656d8b3d
120 N256b7ba1e6714a98b90af6ef7caf0ead schema:volumeNumber 38
121 rdf:type schema:PublicationVolume
122 N581e3c0c1e1c45a0ab4bf48bd674e70f schema:name pubmed_id
123 schema:value 31997841
124 rdf:type schema:PropertyValue
125 N5a53b48eb99847929dc9953a53c9f98a rdf:first sg:person.012675333041.87
126 rdf:rest N7fe5bd9a5105432796070a14a3f22364
127 N623f86d8667a4638a971fbce5ea5eaa1 rdf:first sg:person.01231233510.32
128 rdf:rest Na5cd4edc67dc47048b26806b71d6670f
129 N7fe5bd9a5105432796070a14a3f22364 rdf:first sg:person.015065255415.80
130 rdf:rest N203c63bb19e54ea69b21566c1438f9d7
131 Na5cd4edc67dc47048b26806b71d6670f rdf:first sg:person.014166322421.69
132 rdf:rest N2211b0c00afe48c8b871ba5fcfd24a84
133 Nb2944dfe269a498b9705542361fc58d5 rdf:first sg:person.010736532755.22
134 rdf:rest N5a53b48eb99847929dc9953a53c9f98a
135 Nb8b848df8be8441ca82412c2656d8b3d rdf:first sg:person.016356644021.44
136 rdf:rest Nb2944dfe269a498b9705542361fc58d5
137 Ncae1879cb632403a8d487725ccc0c64e schema:name dimensions_id
138 schema:value pub.1090284122
139 rdf:type schema:PropertyValue
140 Nfe2e16e6fc3b40b4b2810da5d38bc42f schema:issueNumber 6
141 rdf:type schema:PublicationIssue
142 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
143 schema:name Earth Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
146 schema:name Atmospheric Sciences
147 rdf:type schema:DefinedTerm
148 sg:grant.12915359 http://pending.schema.org/fundedItem sg:pub.10.1007/s10712-017-9419-1
149 rdf:type schema:MonetaryGrant
150 sg:grant.3487026 http://pending.schema.org/fundedItem sg:pub.10.1007/s10712-017-9419-1
151 rdf:type schema:MonetaryGrant
152 sg:grant.3848471 http://pending.schema.org/fundedItem sg:pub.10.1007/s10712-017-9419-1
153 rdf:type schema:MonetaryGrant
154 sg:grant.5493737 http://pending.schema.org/fundedItem sg:pub.10.1007/s10712-017-9419-1
155 rdf:type schema:MonetaryGrant
156 sg:grant.6143359 http://pending.schema.org/fundedItem sg:pub.10.1007/s10712-017-9419-1
157 rdf:type schema:MonetaryGrant
158 sg:journal.1051934 schema:issn 0169-3298
159 1573-0956
160 schema:name Surveys in Geophysics
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.010736532755.22 schema:affiliation grid-institutes:grid.27476.30
164 schema:familyName Masunaga
165 schema:givenName Hirohiko
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736532755.22
167 rdf:type schema:Person
168 sg:person.01154327440.44 schema:affiliation grid-institutes:grid.26790.3a
169 schema:familyName Zuidema
170 schema:givenName Paquita
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154327440.44
172 rdf:type schema:Person
173 sg:person.01231233510.32 schema:affiliation grid-institutes:grid.9435.b
174 schema:familyName Holloway
175 schema:givenName Christopher E.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231233510.32
177 rdf:type schema:Person
178 sg:person.012675333041.87 schema:affiliation grid-institutes:grid.14003.36
179 schema:familyName L’Ecuyer
180 schema:givenName Tristan S.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675333041.87
182 rdf:type schema:Person
183 sg:person.013647160343.22 schema:affiliation grid-institutes:None
184 schema:familyName Bony
185 schema:givenName Sandrine
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
187 rdf:type schema:Person
188 sg:person.014166322421.69 schema:affiliation grid-institutes:grid.255986.5
189 schema:familyName Wing
190 schema:givenName Allison A.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166322421.69
192 rdf:type schema:Person
193 sg:person.015065255415.80 schema:affiliation grid-institutes:grid.423024.3
194 schema:familyName Turner
195 schema:givenName David D.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065255415.80
197 rdf:type schema:Person
198 sg:person.016356644021.44 schema:affiliation grid-institutes:grid.4444.0
199 schema:familyName Muller
200 schema:givenName Caroline
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356644021.44
202 rdf:type schema:Person
203 sg:pub.10.1007/978-3-642-30183-4_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045110334
204 https://doi.org/10.1007/978-3-642-30183-4_49
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s10712-017-9408-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083887659
207 https://doi.org/10.1007/s10712-017-9408-4
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/326483a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051941906
210 https://doi.org/10.1038/326483a0
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature05834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446527
213 https://doi.org/10.1038/nature05834
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature14339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053597550
216 https://doi.org/10.1038/nature14339
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/ncomms7591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010613677
219 https://doi.org/10.1038/ncomms7591
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/ngeo2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031423891
222 https://doi.org/10.1038/ngeo2398
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ngeo2414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015288292
225 https://doi.org/10.1038/ngeo2414
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nphys314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053001139
228 https://doi.org/10.1038/nphys314
229 rdf:type schema:CreativeWork
230 grid-institutes:None schema:alternateName Sorbonne University, LMD/IPSL, CNRS, Univ Paris 06, mailbox 99, 4 Place Jussieu, 75252, Paris cedex 05, France
231 schema:name Sorbonne University, LMD/IPSL, CNRS, Univ Paris 06, mailbox 99, 4 Place Jussieu, 75252, Paris cedex 05, France
232 rdf:type schema:Organization
233 grid-institutes:grid.14003.36 schema:alternateName Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, 1225 West Dayton Street, 53706, Madison, WI, USA
234 schema:name Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, 1225 West Dayton Street, 53706, Madison, WI, USA
235 rdf:type schema:Organization
236 grid-institutes:grid.255986.5 schema:alternateName Department of Earth, Ocean and Atmospheric Science, Florida State University, Mail Code 4520, PO Box 3064520, 32306-4520, Tallahassee, FL, USA
237 schema:name Department of Earth, Ocean and Atmospheric Science, Florida State University, Mail Code 4520, PO Box 3064520, 32306-4520, Tallahassee, FL, USA
238 Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, PO Box 1000, 10964-1000, Palisades, NY, USA
239 rdf:type schema:Organization
240 grid-institutes:grid.26790.3a schema:alternateName Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, 33149, Miami, FL, USA
241 schema:name Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, 33149, Miami, FL, USA
242 rdf:type schema:Organization
243 grid-institutes:grid.27476.30 schema:alternateName Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
244 schema:name Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
245 rdf:type schema:Organization
246 grid-institutes:grid.423024.3 schema:alternateName NOAA/Earth System Research Laboratory, Global Systems Division, 325 Broadway, 80305-3337, Boulder, CO, USA
247 schema:name NOAA/Earth System Research Laboratory, Global Systems Division, 325 Broadway, 80305-3337, Boulder, CO, USA
248 rdf:type schema:Organization
249 grid-institutes:grid.4444.0 schema:alternateName LMD/IPSL, CNRS, École Normale Supérieure, Paris Sciences Et Lettres, 24 rue Lhomond, 75230, Paris cedex 05, France
250 schema:name LMD/IPSL, CNRS, École Normale Supérieure, Paris Sciences Et Lettres, 24 rue Lhomond, 75230, Paris cedex 05, France
251 rdf:type schema:Organization
252 grid-institutes:grid.9435.b schema:alternateName Department of Meteorology, University of Reading, RG6 6BB, Reading, UK
253 schema:name Department of Meteorology, University of Reading, RG6 6BB, Reading, UK
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...