Twisted conjugacy in PL-homeomorphism groups of the circle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-06

AUTHORS

Daciberg Lima Gonçalves, Parameswaran Sankaran

ABSTRACT

Given an automorphism ϕ:Γ→Γ of a group, one has a left action of Γ on itself defined as g.x=gxϕ(g-1). The orbits of this action are called the Reidemeister classes or ϕ-twisted conjugacy classes. We denote by R(ϕ)∈N∪{∞} the Reidemeister number of ϕ, namely, the cardinality of the orbit space R(ϕ) if it is finite and R(ϕ)=∞ if R(ϕ) is infinite. The group Γ is said to have the R∞-property if R(ϕ)=∞ for all automorphisms ϕ∈Aut(Γ). We show that the generalized Thompson group T(r, A, P) has the R∞-property when the slope group P⊂R>0× is not cyclic. More... »

PAGES

1-10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10711-018-0414-6

DOI

http://dx.doi.org/10.1007/s10711-018-0414-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110421848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Department of Mathematics - IME, Universidade de S\u00e3o Paulo, Rua do Mat\u00e3o\u00a01010\u00a005508-090, S\u00e3o Paulo, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gon\u00e7alves", 
        "givenName": "Daciberg Lima", 
        "id": "sg:person.011505000167.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505000167.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, (HBNI), CIT Campus, Taramani, 600113, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sankaran", 
        "givenName": "Parameswaran", 
        "id": "sg:person.013664672601.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664672601.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jabr.1997.7315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002032127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-016-1403-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023110700", 
          "https://doi.org/10.1007/s11856-016-1403-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-016-1403-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023110700", 
          "https://doi.org/10.1007/s11856-016-1403-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1992-1094555-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028474785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927877808822256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049788094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4049(87)90015-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051641567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-007-9216-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052889578", 
          "https://doi.org/10.1007/s10711-007-9216-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2008.238.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2008.238.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2010.247.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069072030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2010.247.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069072030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2016.280.349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069072850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2017.287.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083988009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/surv/215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098468196"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-06", 
    "datePublishedReg": "2018-12-06", 
    "description": "Given an automorphism \u03d5:\u0393\u2192\u0393 of a group, one has a left action of \u0393 on itself defined as g.x=gx\u03d5(g-1). The orbits of this action are called the Reidemeister classes or \u03d5-twisted conjugacy classes. We denote by R(\u03d5)\u2208N\u222a{\u221e} the Reidemeister number of \u03d5, namely, the cardinality of the orbit space R(\u03d5) if it is finite and R(\u03d5)=\u221e if R(\u03d5) is infinite. The group \u0393 is said to have the R\u221e-property if R(\u03d5)=\u221e for all automorphisms \u03d5\u2208Aut(\u0393). We show that the generalized Thompson group T(r, A, P) has the R\u221e-property when the slope group P\u2282R>0\u00d7 is not cyclic.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10711-018-0414-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7054275", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135919", 
        "issn": [
          "0046-5755", 
          "1572-9168"
        ], 
        "name": "Geometriae Dedicata", 
        "type": "Periodical"
      }
    ], 
    "name": "Twisted conjugacy in PL-homeomorphism groups of the circle", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83bb7394afc0a252ce1e76db9c52c3764f2bbe0cba6e4d0df39ba8f11fd91d35"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10711-018-0414-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110421848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10711-018-0414-6", 
      "https://app.dimensions.ai/details/publication/pub.1110421848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000290_0000000290/records_34895_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10711-018-0414-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10711-018-0414-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10711-018-0414-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10711-018-0414-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10711-018-0414-6'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      35 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10711-018-0414-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf6ed6f92bbef41e2940101025699b820
4 schema:citation sg:pub.10.1007/s10711-007-9216-y
5 sg:pub.10.1007/s11856-016-1403-9
6 https://doi.org/10.1006/jabr.1997.7315
7 https://doi.org/10.1016/0022-4049(87)90015-6
8 https://doi.org/10.1080/00927877808822256
9 https://doi.org/10.1090/s0002-9947-1992-1094555-4
10 https://doi.org/10.1090/surv/215
11 https://doi.org/10.2140/pjm.2008.238.1
12 https://doi.org/10.2140/pjm.2010.247.335
13 https://doi.org/10.2140/pjm.2016.280.349
14 https://doi.org/10.2140/pjm.2017.287.101
15 schema:datePublished 2018-12-06
16 schema:datePublishedReg 2018-12-06
17 schema:description Given an automorphism ϕ:Γ→Γ of a group, one has a left action of Γ on itself defined as g.x=gxϕ(g-1). The orbits of this action are called the Reidemeister classes or ϕ-twisted conjugacy classes. We denote by R(ϕ)∈N∪{∞} the Reidemeister number of ϕ, namely, the cardinality of the orbit space R(ϕ) if it is finite and R(ϕ)=∞ if R(ϕ) is infinite. The group Γ is said to have the R∞-property if R(ϕ)=∞ for all automorphisms ϕ∈Aut(Γ). We show that the generalized Thompson group T(r, A, P) has the R∞-property when the slope group P⊂R>0× is not cyclic.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf sg:journal.1135919
22 schema:name Twisted conjugacy in PL-homeomorphism groups of the circle
23 schema:pagination 1-10
24 schema:productId N3eabf63c874041b2944f8e2c61d5d7f1
25 N9734b298cbd4400c89bf6a441f242b50
26 Nc4379e37fe1242d38a476d5acf0232fb
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110421848
28 https://doi.org/10.1007/s10711-018-0414-6
29 schema:sdDatePublished 2019-04-11T08:20
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N69247e92ea8441cdbe83d2e23b08114d
32 schema:url https://link.springer.com/10.1007%2Fs10711-018-0414-6
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N31ac81f89e294398acb7539409b6eecf rdf:first sg:person.013664672601.54
37 rdf:rest rdf:nil
38 N3eabf63c874041b2944f8e2c61d5d7f1 schema:name doi
39 schema:value 10.1007/s10711-018-0414-6
40 rdf:type schema:PropertyValue
41 N69247e92ea8441cdbe83d2e23b08114d schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N9734b298cbd4400c89bf6a441f242b50 schema:name readcube_id
44 schema:value 83bb7394afc0a252ce1e76db9c52c3764f2bbe0cba6e4d0df39ba8f11fd91d35
45 rdf:type schema:PropertyValue
46 Nc4379e37fe1242d38a476d5acf0232fb schema:name dimensions_id
47 schema:value pub.1110421848
48 rdf:type schema:PropertyValue
49 Nf6ed6f92bbef41e2940101025699b820 rdf:first sg:person.011505000167.36
50 rdf:rest N31ac81f89e294398acb7539409b6eecf
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:grant.7054275 http://pending.schema.org/fundedItem sg:pub.10.1007/s10711-018-0414-6
58 rdf:type schema:MonetaryGrant
59 sg:journal.1135919 schema:issn 0046-5755
60 1572-9168
61 schema:name Geometriae Dedicata
62 rdf:type schema:Periodical
63 sg:person.011505000167.36 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
64 schema:familyName Gonçalves
65 schema:givenName Daciberg Lima
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505000167.36
67 rdf:type schema:Person
68 sg:person.013664672601.54 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
69 schema:familyName Sankaran
70 schema:givenName Parameswaran
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664672601.54
72 rdf:type schema:Person
73 sg:pub.10.1007/s10711-007-9216-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052889578
74 https://doi.org/10.1007/s10711-007-9216-y
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s11856-016-1403-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023110700
77 https://doi.org/10.1007/s11856-016-1403-9
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1006/jabr.1997.7315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002032127
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0022-4049(87)90015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051641567
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1080/00927877808822256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049788094
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1090/s0002-9947-1992-1094555-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028474785
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/surv/215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098468196
88 rdf:type schema:CreativeWork
89 https://doi.org/10.2140/pjm.2008.238.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069071841
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2140/pjm.2010.247.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069072030
92 rdf:type schema:CreativeWork
93 https://doi.org/10.2140/pjm.2016.280.349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069072850
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2140/pjm.2017.287.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083988009
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
98 schema:name Department of Mathematics - IME, Universidade de São Paulo, Rua do Matão 1010 05508-090, São Paulo, SP, Brazil
99 rdf:type schema:Organization
100 https://www.grid.ac/institutes/grid.462414.1 schema:alternateName Institute of Mathematical Sciences
101 schema:name The Institute of Mathematical Sciences, (HBNI), CIT Campus, Taramani, 600113, Chennai, India
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...