Weyl–Einstein structures on K-contact manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-03

AUTHORS

Paul Gauduchon, Andrei Moroianu

ABSTRACT

We show that a compact K-contact manifold (M,g,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g,\xi )$$\end{document} has a closed Weyl–Einstein connection compatible with the conformal structure [g] if and only if it is Sasaki–Einstein.

PAGES

177-184

References to SciGraph publications

  • 2008-12-03. Einstein–Weyl structures on contact metric manifolds in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • 2002. Riemannian Geometry of Contact and Symplectic Manifolds in NONE
  • 1984-12. La 1-forme de torsion d'une variété hermitienne compacte in MATHEMATISCHE ANNALEN
  • 2003-09-04. Conformal Killing forms on Riemannian manifolds in MATHEMATISCHE ZEITSCHRIFT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10711-017-0223-3

    DOI

    http://dx.doi.org/10.1007/s10711-017-0223-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083542210


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CMLS, \u00c9cole Polytechnique, CNRS, Universit\u00e9 Paris-Saclay, 91128, Palaiseau, France", 
              "id": "http://www.grid.ac/institutes/grid.463843.e", 
              "name": [
                "CMLS, \u00c9cole Polytechnique, CNRS, Universit\u00e9 Paris-Saclay, 91128, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gauduchon", 
            "givenName": "Paul", 
            "id": "sg:person.014103512033.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103512033.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Math\u00e9matiques d\u2019Orsay, Universit\u00e9 Paris-Sud, CNRS, Universit\u00e9 Paris-Saclay, 91405, Orsay, France", 
              "id": "http://www.grid.ac/institutes/grid.463900.8", 
              "name": [
                "Laboratoire de Math\u00e9matiques d\u2019Orsay, Universit\u00e9 Paris-Sud, CNRS, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moroianu", 
            "givenName": "Andrei", 
            "id": "sg:person.013150311207.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150311207.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01455968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031818020", 
              "https://doi.org/10.1007/bf01455968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-003-0549-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010399464", 
              "https://doi.org/10.1007/s00209-003-0549-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10455-008-9145-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026764124", 
              "https://doi.org/10.1007/s10455-008-9145-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3604-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023521873", 
              "https://doi.org/10.1007/978-1-4757-3604-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-03", 
        "datePublishedReg": "2017-02-03", 
        "description": "We show that a compact K-contact manifold (M,g,\u03be)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(M,g,\\xi )$$\\end{document} has a closed Weyl\u2013Einstein connection compatible with the conformal structure [g] if and only if it is Sasaki\u2013Einstein.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10711-017-0223-3", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1135919", 
            "issn": [
              "0046-5755", 
              "1572-9168"
            ], 
            "name": "Geometriae Dedicata", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "189"
          }
        ], 
        "keywords": [
          "K-contact manifold", 
          "connection", 
          "structure", 
          "conformal structure", 
          "Sasaki-Einstein", 
          "manifold"
        ], 
        "name": "Weyl\u2013Einstein structures on K-contact manifolds", 
        "pagination": "177-184", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083542210"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10711-017-0223-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10711-017-0223-3", 
          "https://app.dimensions.ai/details/publication/pub.1083542210"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_717.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10711-017-0223-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10711-017-0223-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10711-017-0223-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10711-017-0223-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10711-017-0223-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      34 URIs      22 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10711-017-0223-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N06047f9cab6b4af4a2f98823e13c293d
    4 schema:citation sg:pub.10.1007/978-1-4757-3604-5
    5 sg:pub.10.1007/bf01455968
    6 sg:pub.10.1007/s00209-003-0549-4
    7 sg:pub.10.1007/s10455-008-9145-5
    8 schema:datePublished 2017-02-03
    9 schema:datePublishedReg 2017-02-03
    10 schema:description We show that a compact K-contact manifold (M,g,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g,\xi )$$\end{document} has a closed Weyl–Einstein connection compatible with the conformal structure [g] if and only if it is Sasaki–Einstein.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N112e3978276d477a9da6cfe003a6686b
    14 N11824b84405543c4ba99a31d6a59fab2
    15 sg:journal.1135919
    16 schema:keywords K-contact manifold
    17 Sasaki-Einstein
    18 conformal structure
    19 connection
    20 manifold
    21 structure
    22 schema:name Weyl–Einstein structures on K-contact manifolds
    23 schema:pagination 177-184
    24 schema:productId N0ba254b9e398471d95e2652ca4b3467f
    25 N0dc9399bf6964e85bba7a8c252bdadd0
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083542210
    27 https://doi.org/10.1007/s10711-017-0223-3
    28 schema:sdDatePublished 2022-12-01T06:35
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N976be08c158d4f88a43947806c4c2256
    31 schema:url https://doi.org/10.1007/s10711-017-0223-3
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N06047f9cab6b4af4a2f98823e13c293d rdf:first sg:person.014103512033.44
    36 rdf:rest N2e1f2bf36fe74bcfad2210366812969d
    37 N0ba254b9e398471d95e2652ca4b3467f schema:name dimensions_id
    38 schema:value pub.1083542210
    39 rdf:type schema:PropertyValue
    40 N0dc9399bf6964e85bba7a8c252bdadd0 schema:name doi
    41 schema:value 10.1007/s10711-017-0223-3
    42 rdf:type schema:PropertyValue
    43 N112e3978276d477a9da6cfe003a6686b schema:volumeNumber 189
    44 rdf:type schema:PublicationVolume
    45 N11824b84405543c4ba99a31d6a59fab2 schema:issueNumber 1
    46 rdf:type schema:PublicationIssue
    47 N2e1f2bf36fe74bcfad2210366812969d rdf:first sg:person.013150311207.51
    48 rdf:rest rdf:nil
    49 N976be08c158d4f88a43947806c4c2256 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Mathematical Sciences
    53 rdf:type schema:DefinedTerm
    54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Pure Mathematics
    56 rdf:type schema:DefinedTerm
    57 sg:journal.1135919 schema:issn 0046-5755
    58 1572-9168
    59 schema:name Geometriae Dedicata
    60 schema:publisher Springer Nature
    61 rdf:type schema:Periodical
    62 sg:person.013150311207.51 schema:affiliation grid-institutes:grid.463900.8
    63 schema:familyName Moroianu
    64 schema:givenName Andrei
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150311207.51
    66 rdf:type schema:Person
    67 sg:person.014103512033.44 schema:affiliation grid-institutes:grid.463843.e
    68 schema:familyName Gauduchon
    69 schema:givenName Paul
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103512033.44
    71 rdf:type schema:Person
    72 sg:pub.10.1007/978-1-4757-3604-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023521873
    73 https://doi.org/10.1007/978-1-4757-3604-5
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf01455968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031818020
    76 https://doi.org/10.1007/bf01455968
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/s00209-003-0549-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010399464
    79 https://doi.org/10.1007/s00209-003-0549-4
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/s10455-008-9145-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026764124
    82 https://doi.org/10.1007/s10455-008-9145-5
    83 rdf:type schema:CreativeWork
    84 grid-institutes:grid.463843.e schema:alternateName CMLS, École Polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France
    85 schema:name CMLS, École Polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France
    86 rdf:type schema:Organization
    87 grid-institutes:grid.463900.8 schema:alternateName Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
    88 schema:name Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...