# Similar dissection of sets

Ontology type: schema:ScholarlyArticle      Open Access: True

### Article Info

DATE

2010-05-06

AUTHORS ABSTRACT

In 1994, Martin Gardner stated a set of questions concerning the dissection of a square or an equilateral triangle in three similar parts. Meanwhile, Gardner’s questions have been generalized and some of them are already solved. In the present paper, we solve more of his questions and treat them in a much more general context. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\subset \mathbb{R}^d}$$\end{document} be a given set and let f1, . . . , fk be injective continuous mappings. Does there exist a set X such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D = X \cup f_1(X) \cup \cdots \cup f_k(X)}$$\end{document} is satisfied with a non-overlapping union? We will prove that such a set X exists for certain choices of D and {f1, . . . , fk}. The solutions X will often turn out to be attractors of iterated function systems with condensation in the sense of Barnsley. Coming back to Gardner’s setting, we use our theory to prove that an equilateral triangle can be dissected in three similar copies whose areas have ratio 1 : 1 : a for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a \ge (3+\sqrt{5})/2}$$\end{document}. More... »

PAGES

233-247

### References to SciGraph publications

• 2002-09. Trisecting a parallelogram in APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES
• ### Journal

TITLE

Geometriae Dedicata

ISSUE

1

VOLUME

150

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10711-010-9502-y

DOI

http://dx.doi.org/10.1007/s10711-010-9502-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015354336

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan",
"id": "http://www.grid.ac/institutes/grid.260975.f",
"name": [
"Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
],
"type": "Organization"
},
"familyName": "Akiyama",
"givenName": "Shigeki",
"id": "sg:person.011153327405.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematics and Computational Science, Sun Yat-Sen University, 510275, Guangzhou, China",
"id": "http://www.grid.ac/institutes/grid.12981.33",
"name": [
"School of Mathematics and Computational Science, Sun Yat-Sen University, 510275, Guangzhou, China"
],
"type": "Organization"
},
"familyName": "Luo",
"givenName": "Jun",
"id": "sg:person.0674040142.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674040142.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Knowledge Engineering and Computer Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe-shi, 610-0394, Kyoto-fu, Japan",
"id": "http://www.grid.ac/institutes/grid.255178.c",
"name": [
"Department of Knowledge Engineering and Computer Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe-shi, 610-0394, Kyoto-fu, Japan"
],
"type": "Organization"
},
"familyName": "Okazaki",
"givenName": "Ryotaro",
"id": "sg:person.011036447511.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036447511.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "LIAFA, CNRS UMR 7089, Universit\u00e9 Paris Diderot - Paris 7, Case 7014, 75205, Paris Cedex 13, France",
"id": "http://www.grid.ac/institutes/grid.462842.e",
"name": [
"LIAFA, CNRS UMR 7089, Universit\u00e9 Paris Diderot - Paris 7, Case 7014, 75205, Paris Cedex 13, France"
],
"type": "Organization"
},
"familyName": "Steiner",
"givenName": "Wolfgang",
"id": "sg:person.012140615123.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140615123.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, University of Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria",
"id": "http://www.grid.ac/institutes/grid.181790.6",
"name": [
"Department of Mathematics and Statistics, University of Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria"
],
"type": "Organization"
},
"familyName": "Thuswaldner",
"givenName": "J\u00f6rg",
"id": "sg:person.011406664737.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406664737.45"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11766-002-0009-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026186108",
"https://doi.org/10.1007/s11766-002-0009-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-05-06",
"datePublishedReg": "2010-05-06",
"description": "In 1994, Martin Gardner stated a set of questions concerning the dissection of a square or an equilateral triangle in three similar parts. Meanwhile, Gardner\u2019s questions have been generalized and some of them are already solved. In the present paper, we solve more of his questions and treat them in a much more general context. Let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${D\\subset \\mathbb{R}^d}$$\\end{document} be a given set and let f1, . . . , fk be injective continuous mappings. Does there exist a set X such that \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${D = X \\cup f_1(X) \\cup \\cdots \\cup f_k(X)}$$\\end{document} is satisfied with a non-overlapping union? We will prove that such a set X exists for certain choices of D and {f1, . . . , fk}. The solutions X will often turn out to be attractors of iterated function systems with condensation in the sense of Barnsley. Coming back to Gardner\u2019s setting, we use our theory to prove that an equilateral triangle can be dissected in three similar copies whose areas have ratio 1 : 1 : a for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${a \\ge (3+\\sqrt{5})/2}$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s10711-010-9502-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1135919",
"issn": [
"0046-5755",
"1572-9168"
],
"name": "Geometriae Dedicata",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"equilateral triangle",
"continuous mapping",
"certain choices",
"solution X",
"Martin Gardner",
"set X",
"function systems",
"present paper",
"general context",
"set",
"attractors",
"squares",
"triangle",
"theory",
"sense",
"Barnsley",
"ratio 1",
"Gardner",
"mapping",
"FK",
"system",
"questions",
"similar parts",
"exists",
"choice",
"condensation",
"setting",
"similar copies",
"set of questions",
"part",
"context",
"area",
"dissection",
"F1",
"Union",
"copies",
"similar dissection",
"paper"
],
"name": "Similar dissection of sets",
"pagination": "233-247",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015354336"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10711-010-9502-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10711-010-9502-y",
"https://app.dimensions.ai/details/publication/pub.1015354336"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:00",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_509.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10711-010-9502-y"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10711-010-9502-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10711-010-9502-y'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10711-010-9502-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10711-010-9502-y'

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      64 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 schema:author Nc4279a1c98014060b660eb0688d0a86b
4 schema:citation sg:pub.10.1007/s11766-002-0009-7
5 schema:datePublished 2010-05-06
6 schema:datePublishedReg 2010-05-06
7 schema:description In 1994, Martin Gardner stated a set of questions concerning the dissection of a square or an equilateral triangle in three similar parts. Meanwhile, Gardner’s questions have been generalized and some of them are already solved. In the present paper, we solve more of his questions and treat them in a much more general context. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\subset \mathbb{R}^d}$$\end{document} be a given set and let f1, . . . , fk be injective continuous mappings. Does there exist a set X such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D = X \cup f_1(X) \cup \cdots \cup f_k(X)}$$\end{document} is satisfied with a non-overlapping union? We will prove that such a set X exists for certain choices of D and {f1, . . . , fk}. The solutions X will often turn out to be attractors of iterated function systems with condensation in the sense of Barnsley. Coming back to Gardner’s setting, we use our theory to prove that an equilateral triangle can be dissected in three similar copies whose areas have ratio 1 : 1 : a for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a \ge (3+\sqrt{5})/2}$$\end{document}.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N62cabb7caebd4ffa9e0b4c2a2df56267
12 Na75aff16979049fb89d0690371376905
13 sg:journal.1135919
14 schema:keywords Barnsley
15 F1
16 FK
17 Gardner
18 Martin Gardner
19 Union
20 area
21 attractors
22 certain choices
23 choice
24 condensation
25 context
26 continuous mapping
27 copies
28 dissection
29 equilateral triangle
30 exists
31 function systems
32 general context
33 mapping
34 paper
35 part
36 present paper
37 questions
38 ratio 1
39 sense
40 set
41 set X
42 set of questions
43 setting
44 similar copies
45 similar dissection
46 similar parts
47 solution X
48 squares
49 system
50 theory
51 triangle
52 schema:name Similar dissection of sets
53 schema:pagination 233-247
54 schema:productId N35ff6af214ef4067bfdffcc4e4f7456a
55 N52a23d35e62b49baa04cd1c158de2b85
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015354336
57 https://doi.org/10.1007/s10711-010-9502-y
58 schema:sdDatePublished 2022-05-10T10:00
60 schema:sdPublisher Nc7cb58ef60624fc88267762903098d8a
61 schema:url https://doi.org/10.1007/s10711-010-9502-y
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N33f30e667032450493927b4f407959d4 rdf:first sg:person.0674040142.18
66 rdf:rest N679330d93a0a4030bd9982fd75eb346a
67 N35ff6af214ef4067bfdffcc4e4f7456a schema:name doi
68 schema:value 10.1007/s10711-010-9502-y
69 rdf:type schema:PropertyValue
70 N52a23d35e62b49baa04cd1c158de2b85 schema:name dimensions_id
71 schema:value pub.1015354336
72 rdf:type schema:PropertyValue
74 rdf:type schema:PublicationVolume
75 N679330d93a0a4030bd9982fd75eb346a rdf:first sg:person.011036447511.49
76 rdf:rest Nd731675d6125428786301298c1c012f7
77 Na75aff16979049fb89d0690371376905 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Nc4279a1c98014060b660eb0688d0a86b rdf:first sg:person.011153327405.03
80 rdf:rest N33f30e667032450493927b4f407959d4
81 Nc7cb58ef60624fc88267762903098d8a schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Ncbf6289ac3424172999cbc4f075e4e79 rdf:first sg:person.011406664737.45
84 rdf:rest rdf:nil
85 Nd731675d6125428786301298c1c012f7 rdf:first sg:person.012140615123.03
86 rdf:rest Ncbf6289ac3424172999cbc4f075e4e79
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1135919 schema:issn 0046-5755
94 1572-9168
95 schema:name Geometriae Dedicata
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.011036447511.49 schema:affiliation grid-institutes:grid.255178.c
99 schema:familyName Okazaki
100 schema:givenName Ryotaro
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036447511.49
102 rdf:type schema:Person
103 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
104 schema:familyName Akiyama
105 schema:givenName Shigeki
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
107 rdf:type schema:Person
108 sg:person.011406664737.45 schema:affiliation grid-institutes:grid.181790.6
109 schema:familyName Thuswaldner
110 schema:givenName Jörg
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406664737.45
112 rdf:type schema:Person
113 sg:person.012140615123.03 schema:affiliation grid-institutes:grid.462842.e
114 schema:familyName Steiner
115 schema:givenName Wolfgang
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140615123.03
117 rdf:type schema:Person
118 sg:person.0674040142.18 schema:affiliation grid-institutes:grid.12981.33
119 schema:familyName Luo
120 schema:givenName Jun
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674040142.18
122 rdf:type schema:Person
123 sg:pub.10.1007/s11766-002-0009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026186108
124 https://doi.org/10.1007/s11766-002-0009-7
125 rdf:type schema:CreativeWork
126 grid-institutes:grid.12981.33 schema:alternateName School of Mathematics and Computational Science, Sun Yat-Sen University, 510275, Guangzhou, China
127 schema:name School of Mathematics and Computational Science, Sun Yat-Sen University, 510275, Guangzhou, China
128 rdf:type schema:Organization
129 grid-institutes:grid.181790.6 schema:alternateName Department of Mathematics and Statistics, University of Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
130 schema:name Department of Mathematics and Statistics, University of Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
131 rdf:type schema:Organization
132 grid-institutes:grid.255178.c schema:alternateName Department of Knowledge Engineering and Computer Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe-shi, 610-0394, Kyoto-fu, Japan
133 schema:name Department of Knowledge Engineering and Computer Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe-shi, 610-0394, Kyoto-fu, Japan
134 rdf:type schema:Organization
135 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
136 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
137 rdf:type schema:Organization
138 grid-institutes:grid.462842.e schema:alternateName LIAFA, CNRS UMR 7089, Université Paris Diderot - Paris 7, Case 7014, 75205, Paris Cedex 13, France
139 schema:name LIAFA, CNRS UMR 7089, Université Paris Diderot - Paris 7, Case 7014, 75205, Paris Cedex 13, France
140 rdf:type schema:Organization