Comprehensive analysis of the LncRNAs, MiRNAs, and MRNAs acting within the competing endogenous RNA network of LGG View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-01-07

AUTHORS

Yiming Ding, Hanjie Liu, Chuanbao Zhang, Zhaoshi Bao, Shuqing Yu

ABSTRACT

Messenger RNA (mRNA) and long noncoding RNA (lncRNA) targets interact via competitive microRNA (miRNA) binding. However, the roles of cancer-specific lncRNAs in the competing endogenous RNA (ceRNA) networks of low-grade glioma (LGG) remain unclear. This study obtained RNA sequencing data for normal solid tissue and LGG primary tumour tissue from The Cancer Genome Atlas database. We used a computational method to analyse the relationships among the mRNAs, lncRNAs, and miRNAs in these samples. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to predict the biological processes (BPs) and pathways associated with these genes. Kaplan–Meier survival analysis was used to evaluate the association between the expression levels of specific mRNAs, lncRNAs, and miRNAs and overall survival. Finally, we created a ceRNA network describing the relationships among these mRNAs, lncRNAs, and miRNAs using Cytoscape 3.5.1. A total of 2555 differentially expressed (DE) mRNAs, 218 DElncRNAs, and 192 DEmiRNAs were identified using R. In addition, GO and KEGG pathway analysis of the mRNAs and lncRNAs in the ceRNA network identified 10 BPs, 10 cell components, 10 molecular functions, and 48 KEGG pathways as selectively enriched. A total of 55 lncRNAs, 50 miRNAs, and 10 mRNAs from this network were shown to be closely associated with overall survival in LGG. Finally, 59 miRNAs, 235 mRNAs, and 17 lncRNAs were used to develop a ceRNA network comprising 313 nodes and 1046 edges. This study helps expand our understanding of ceRNA networks and serves to clarify the underlying pathogenesis mechanism of LGG. More... »

PAGES

41-50

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10709-021-00145-3

DOI

http://dx.doi.org/10.1007/s10709-021-00145-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1144474902

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34993720


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Long Noncoding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411617.4", 
          "name": [
            "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yiming", 
        "id": "sg:person.016075603133.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016075603133.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Neurosurgical Institute, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411617.4", 
          "name": [
            "Beijing Neurosurgical Institute, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hanjie", 
        "id": "sg:person.012332114105.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332114105.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411617.4", 
          "name": [
            "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chuanbao", 
        "id": "sg:person.0661443566.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661443566.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411617.4", 
          "name": [
            "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bao", 
        "givenName": "Zhaoshi", 
        "id": "sg:person.01210061162.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210061162.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411617.4", 
          "name": [
            "Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Shuqing", 
        "id": "sg:person.015701456071.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015701456071.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00018-016-2282-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022227368", 
          "https://doi.org/10.1007/s00018-016-2282-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0409-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012100318", 
          "https://doi.org/10.1186/s13059-014-0409-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-020-03399-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124590685", 
          "https://doi.org/10.1007/s11060-020-03399-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-28957-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105391192", 
          "https://doi.org/10.1038/s41598-018-28957-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13277-015-4110-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017753182", 
          "https://doi.org/10.1007/s13277-015-4110-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12253-012-9593-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030547061", 
          "https://doi.org/10.1007/s12253-012-9593-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12920-019-0479-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112896221", 
          "https://doi.org/10.1186/s12920-019-0479-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrneurol.2016.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019720614", 
          "https://doi.org/10.1038/nrneurol.2016.26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd4140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018253962", 
          "https://doi.org/10.1038/nrd4140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13562-021-00674-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137655432", 
          "https://doi.org/10.1007/s13562-021-00674-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-01-07", 
    "datePublishedReg": "2022-01-07", 
    "description": "Messenger RNA (mRNA) and long noncoding RNA (lncRNA) targets interact via competitive microRNA (miRNA) binding. However, the roles of cancer-specific lncRNAs in the competing endogenous RNA (ceRNA) networks of low-grade glioma (LGG) remain unclear. This study obtained RNA sequencing data for normal solid tissue and LGG primary tumour tissue from The Cancer Genome Atlas database. We used a computational method to analyse the relationships among the mRNAs, lncRNAs, and miRNAs in these samples. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to predict the biological processes (BPs) and pathways associated with these genes. Kaplan\u2013Meier survival analysis was used to evaluate the association between the expression levels of specific mRNAs, lncRNAs, and miRNAs and overall survival. Finally, we created a ceRNA network describing the relationships among these mRNAs, lncRNAs, and miRNAs using Cytoscape 3.5.1. A total of 2555 differentially expressed (DE) mRNAs, 218 DElncRNAs, and 192 DEmiRNAs were identified using R. In addition, GO and KEGG pathway analysis of the mRNAs and lncRNAs in the ceRNA network identified 10 BPs, 10 cell components, 10 molecular functions, and 48 KEGG pathways as selectively enriched. A total of 55 lncRNAs, 50 miRNAs, and 10 mRNAs from this network were shown to be closely associated with overall survival in LGG. Finally, 59 miRNAs, 235 mRNAs, and 17 lncRNAs were used to develop a ceRNA network comprising 313 nodes and 1046 edges. This study helps expand our understanding of ceRNA networks and serves to clarify the underlying pathogenesis mechanism of LGG.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10709-021-00145-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017127", 
        "issn": [
          "0016-6707", 
          "1573-6857"
        ], 
        "name": "Genetica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "150"
      }
    ], 
    "keywords": [
      "endogenous RNA (ceRNA) network", 
      "ceRNA network", 
      "biological processes", 
      "messenger RNA", 
      "RNA network", 
      "Genomes (KEGG) pathway enrichment analysis", 
      "Gene Ontology (GO) function", 
      "KEGG pathway analysis", 
      "RNA sequencing data", 
      "pathway enrichment analysis", 
      "cancer-specific lncRNAs", 
      "specific messenger RNAs", 
      "molecular functions", 
      "Cytoscape 3.5.1", 
      "Cancer Genome Atlas (TCGA) database", 
      "ontology functions", 
      "Kyoto Encyclopedia", 
      "KEGG pathways", 
      "enrichment analysis", 
      "normal solid tissues", 
      "sequencing data", 
      "pathway analysis", 
      "RNA targets", 
      "lncRNAs", 
      "miRNAs", 
      "expression levels", 
      "pathogenesis mechanisms", 
      "Atlas database", 
      "genes", 
      "primary tumor tissues", 
      "cell components", 
      "pathway", 
      "solid tissues", 
      "DEmiRNAs", 
      "comprehensive analysis", 
      "computational methods", 
      "DElncRNAs", 
      "miRNA", 
      "RNA", 
      "Encyclopedia", 
      "tissue", 
      "mRNA", 
      "tumor tissue", 
      "binding", 
      "survival", 
      "low-grade gliomas", 
      "function", 
      "target", 
      "mechanism", 
      "analysis", 
      "role", 
      "understanding", 
      "gliomas", 
      "relationship", 
      "levels", 
      "components", 
      "study", 
      "GO", 
      "addition", 
      "network", 
      "total", 
      "association", 
      "process", 
      "overall survival", 
      "survival analysis", 
      "Kaplan-Meier survival analysis", 
      "database", 
      "data", 
      "samples", 
      "edge", 
      "method", 
      "nodes"
    ], 
    "name": "Comprehensive analysis of the LncRNAs, MiRNAs, and MRNAs acting within the competing endogenous RNA network of LGG", 
    "pagination": "41-50", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1144474902"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10709-021-00145-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34993720"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10709-021-00145-3", 
      "https://app.dimensions.ai/details/publication/pub.1144474902"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_934.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10709-021-00145-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10709-021-00145-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10709-021-00145-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10709-021-00145-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10709-021-00145-3'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      113 URIs      95 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10709-021-00145-3 schema:about N0a927c745f184ba4aaccb7e96632954e
2 N45afb71426aa4efb948c96387f79ee06
3 Nb3d243cbee1843b9a4bc391411ebf810
4 Nca8bbc888e0748c1b0febcf09107b162
5 Nf1b6d14501c249a1bd3355f517f85ebf
6 Nf9de3515040b44fb800c5a3cde319a5c
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N16fe5625e14b49f3989914811791fd62
10 schema:citation sg:pub.10.1007/s00018-016-2282-2
11 sg:pub.10.1007/s11060-020-03399-7
12 sg:pub.10.1007/s12253-012-9593-x
13 sg:pub.10.1007/s13277-015-4110-y
14 sg:pub.10.1007/s13562-021-00674-0
15 sg:pub.10.1038/nrd4140
16 sg:pub.10.1038/nrneurol.2016.26
17 sg:pub.10.1038/s41598-018-28957-y
18 sg:pub.10.1186/s12920-019-0479-6
19 sg:pub.10.1186/s13059-014-0409-z
20 schema:datePublished 2022-01-07
21 schema:datePublishedReg 2022-01-07
22 schema:description Messenger RNA (mRNA) and long noncoding RNA (lncRNA) targets interact via competitive microRNA (miRNA) binding. However, the roles of cancer-specific lncRNAs in the competing endogenous RNA (ceRNA) networks of low-grade glioma (LGG) remain unclear. This study obtained RNA sequencing data for normal solid tissue and LGG primary tumour tissue from The Cancer Genome Atlas database. We used a computational method to analyse the relationships among the mRNAs, lncRNAs, and miRNAs in these samples. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to predict the biological processes (BPs) and pathways associated with these genes. Kaplan–Meier survival analysis was used to evaluate the association between the expression levels of specific mRNAs, lncRNAs, and miRNAs and overall survival. Finally, we created a ceRNA network describing the relationships among these mRNAs, lncRNAs, and miRNAs using Cytoscape 3.5.1. A total of 2555 differentially expressed (DE) mRNAs, 218 DElncRNAs, and 192 DEmiRNAs were identified using R. In addition, GO and KEGG pathway analysis of the mRNAs and lncRNAs in the ceRNA network identified 10 BPs, 10 cell components, 10 molecular functions, and 48 KEGG pathways as selectively enriched. A total of 55 lncRNAs, 50 miRNAs, and 10 mRNAs from this network were shown to be closely associated with overall survival in LGG. Finally, 59 miRNAs, 235 mRNAs, and 17 lncRNAs were used to develop a ceRNA network comprising 313 nodes and 1046 edges. This study helps expand our understanding of ceRNA networks and serves to clarify the underlying pathogenesis mechanism of LGG.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N52c940f206e646b89efcb142074f83f9
26 Ne4e46ea58b4948d593f79ad08ea22213
27 sg:journal.1017127
28 schema:keywords Atlas database
29 Cancer Genome Atlas (TCGA) database
30 Cytoscape 3.5.1
31 DElncRNAs
32 DEmiRNAs
33 Encyclopedia
34 GO
35 Gene Ontology (GO) function
36 Genomes (KEGG) pathway enrichment analysis
37 KEGG pathway analysis
38 KEGG pathways
39 Kaplan-Meier survival analysis
40 Kyoto Encyclopedia
41 RNA
42 RNA network
43 RNA sequencing data
44 RNA targets
45 addition
46 analysis
47 association
48 binding
49 biological processes
50 cancer-specific lncRNAs
51 ceRNA network
52 cell components
53 components
54 comprehensive analysis
55 computational methods
56 data
57 database
58 edge
59 endogenous RNA (ceRNA) network
60 enrichment analysis
61 expression levels
62 function
63 genes
64 gliomas
65 levels
66 lncRNAs
67 low-grade gliomas
68 mRNA
69 mechanism
70 messenger RNA
71 method
72 miRNA
73 miRNAs
74 molecular functions
75 network
76 nodes
77 normal solid tissues
78 ontology functions
79 overall survival
80 pathogenesis mechanisms
81 pathway
82 pathway analysis
83 pathway enrichment analysis
84 primary tumor tissues
85 process
86 relationship
87 role
88 samples
89 sequencing data
90 solid tissues
91 specific messenger RNAs
92 study
93 survival
94 survival analysis
95 target
96 tissue
97 total
98 tumor tissue
99 understanding
100 schema:name Comprehensive analysis of the LncRNAs, MiRNAs, and MRNAs acting within the competing endogenous RNA network of LGG
101 schema:pagination 41-50
102 schema:productId N0744afb22e274f928dbc5bcd0e284a09
103 N39f79d108315457ea43917e0f7305622
104 Nb964b7ca06e443db96b1d63ba1517c92
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144474902
106 https://doi.org/10.1007/s10709-021-00145-3
107 schema:sdDatePublished 2022-09-02T16:07
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N9c95a26d6952420e8e8de7c35e8e846e
110 schema:url https://doi.org/10.1007/s10709-021-00145-3
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N0744afb22e274f928dbc5bcd0e284a09 schema:name pubmed_id
115 schema:value 34993720
116 rdf:type schema:PropertyValue
117 N0a927c745f184ba4aaccb7e96632954e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name RNA, Long Noncoding
119 rdf:type schema:DefinedTerm
120 N147ad11cd06e4a72b92f552ea1959f2c rdf:first sg:person.012332114105.55
121 rdf:rest N5b791a27a4ce47a19df0e8f69be2d624
122 N16fe5625e14b49f3989914811791fd62 rdf:first sg:person.016075603133.92
123 rdf:rest N147ad11cd06e4a72b92f552ea1959f2c
124 N2c19307d8cb948bc8dd47130db58b4de rdf:first sg:person.01210061162.57
125 rdf:rest Nc321d83e2bac4f35b597cf3d1b7eef78
126 N39f79d108315457ea43917e0f7305622 schema:name dimensions_id
127 schema:value pub.1144474902
128 rdf:type schema:PropertyValue
129 N45afb71426aa4efb948c96387f79ee06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name RNA, Messenger
131 rdf:type schema:DefinedTerm
132 N52c940f206e646b89efcb142074f83f9 schema:volumeNumber 150
133 rdf:type schema:PublicationVolume
134 N5b791a27a4ce47a19df0e8f69be2d624 rdf:first sg:person.0661443566.39
135 rdf:rest N2c19307d8cb948bc8dd47130db58b4de
136 N9c95a26d6952420e8e8de7c35e8e846e schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nb3d243cbee1843b9a4bc391411ebf810 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Glioma
140 rdf:type schema:DefinedTerm
141 Nb964b7ca06e443db96b1d63ba1517c92 schema:name doi
142 schema:value 10.1007/s10709-021-00145-3
143 rdf:type schema:PropertyValue
144 Nc321d83e2bac4f35b597cf3d1b7eef78 rdf:first sg:person.015701456071.81
145 rdf:rest rdf:nil
146 Nca8bbc888e0748c1b0febcf09107b162 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Gene Regulatory Networks
148 rdf:type schema:DefinedTerm
149 Ne4e46ea58b4948d593f79ad08ea22213 schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 Nf1b6d14501c249a1bd3355f517f85ebf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Humans
153 rdf:type schema:DefinedTerm
154 Nf9de3515040b44fb800c5a3cde319a5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name MicroRNAs
156 rdf:type schema:DefinedTerm
157 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
158 schema:name Biological Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
161 schema:name Genetics
162 rdf:type schema:DefinedTerm
163 sg:journal.1017127 schema:issn 0016-6707
164 1573-6857
165 schema:name Genetica
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01210061162.57 schema:affiliation grid-institutes:grid.411617.4
169 schema:familyName Bao
170 schema:givenName Zhaoshi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210061162.57
172 rdf:type schema:Person
173 sg:person.012332114105.55 schema:affiliation grid-institutes:grid.411617.4
174 schema:familyName Liu
175 schema:givenName Hanjie
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332114105.55
177 rdf:type schema:Person
178 sg:person.015701456071.81 schema:affiliation grid-institutes:grid.411617.4
179 schema:familyName Yu
180 schema:givenName Shuqing
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015701456071.81
182 rdf:type schema:Person
183 sg:person.016075603133.92 schema:affiliation grid-institutes:grid.411617.4
184 schema:familyName Ding
185 schema:givenName Yiming
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016075603133.92
187 rdf:type schema:Person
188 sg:person.0661443566.39 schema:affiliation grid-institutes:grid.411617.4
189 schema:familyName Zhang
190 schema:givenName Chuanbao
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661443566.39
192 rdf:type schema:Person
193 sg:pub.10.1007/s00018-016-2282-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022227368
194 https://doi.org/10.1007/s00018-016-2282-2
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11060-020-03399-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124590685
197 https://doi.org/10.1007/s11060-020-03399-7
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s12253-012-9593-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030547061
200 https://doi.org/10.1007/s12253-012-9593-x
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s13277-015-4110-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017753182
203 https://doi.org/10.1007/s13277-015-4110-y
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s13562-021-00674-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137655432
206 https://doi.org/10.1007/s13562-021-00674-0
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nrd4140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018253962
209 https://doi.org/10.1038/nrd4140
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nrneurol.2016.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019720614
212 https://doi.org/10.1038/nrneurol.2016.26
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/s41598-018-28957-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105391192
215 https://doi.org/10.1038/s41598-018-28957-y
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/s12920-019-0479-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112896221
218 https://doi.org/10.1186/s12920-019-0479-6
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/s13059-014-0409-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012100318
221 https://doi.org/10.1186/s13059-014-0409-z
222 rdf:type schema:CreativeWork
223 grid-institutes:grid.411617.4 schema:alternateName Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
224 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People’s Republic of China
225 schema:name Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
226 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, 100070, Beijing, People’s Republic of China
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...