Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Alexander Milovanov, Andrey Zvyagin, Asset Daniyarov, Ruslan Kalendar, Leonid Troshin

ABSTRACT

Cultivated grapevine (Vitis vinifera L. ssp. sativa D.C.) is one of the oldest agricultural crops, each variety comprising an array of clones obtained by vegetative propagation from a selected vine grown from a single seedling. Most clones within a variety are identical, but some show a different form of accession, giving rise to new divergent phenotypes. Understanding the associations among the genotypes within a variety is crucial to efficient management and effective grapevine improvement. Inter-primer binding-site (iPBS) markers may aid in determining the new clones inside closely related genotypes. Following this idea, iPBS markers were used to assess the genetic variation of 33 grapevine genotypes collected from Russia. We used molecular markers to identify the differences among and within five grapevine clonal populations and analysed the variation, using clustering and statistical approaches. Four of a total of 30 PBS primers were selected, based on amplification efficiency. Polymerase chain reaction (PCR) with PBS primers resulted in a total of 1412 bands ranging from 300 to 6000 bp, with a polymorphism ratio of 44%, ranging from 58 to 75 bands per group. In total, were identified seven private bands in 33 genotypes. Results of molecular variance analysis showed that 40% of the total variation was observed within groups and only 60% between groups. Cluster analysis clearly showed that grapevine genotypes are highly divergent and possess abundant genetic diversities. The iPBS PCR-based genome fingerprinting technology used in this study effectively differentiated genotypes into five grapevine groups and indicated that iPBS markers are useful tools for clonal selection. The number of differences between clones was sufficient to identify them as separate clones of studied varieties containing unique mutations. Our previous phenotypic and phenological studies have confirmed that these genotypes differ from those of maternal plants. This work emphasized the need for a better understanding of the genotypic differences among closely related varieties of grapevine and has implications for the management of its selection processes. More... »

PAGES

91-101

References to SciGraph publications

  • 2015-12. Study of genetic variability in Vitis vinifera L. germplasm by high-throughput Vitis18kSNP array: the case of Georgian genetic resources in BMC PLANT BIOLOGY
  • 2016-12. Molecular variability and phylogenetic relationships of guava (Psidium guajava L.) cultivars using inter-primer binding site (iPBS) and microsatellite (SSR) markers in GENETIC RESOURCES AND CROP EVOLUTION
  • 2012-09. Effectiveness of AFLPs and Retrotransposon-Based Markers for the Identification of Portuguese Grapevine Cultivars and Clones in MOLECULAR BIOTECHNOLOGY
  • 2014. Transposon-Based Tagging: IRAP, REMAP, and iPBS in MOLECULAR PLANT TAXONOMY
  • 2015-11. Retrotransposon molecular markers resolve cocoyam (Xanthosoma sagittifolium) and taro (Colocasia esculenta) by type and variety in EUPHYTICA
  • 1997-05. The parentage of a classic wine grape, Cabernet Sauvignon in NATURE GENETICS
  • 2006-04. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports in THEORETICAL AND APPLIED GENETICS
  • 2015-02. Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat in THEORETICAL AND APPLIED GENETICS
  • 2010-11. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation in THEORETICAL AND APPLIED GENETICS
  • 1993-04. Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification in THEORETICAL AND APPLIED GENETICS
  • 2011-05. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers in THEORETICAL AND APPLIED GENETICS
  • 2013-02. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.) in THEORETICAL AND APPLIED GENETICS
  • 2008-05. Transposable elements and the evolution of regulatory networks in NATURE REVIEWS GENETICS
  • 2010-04. Retrotransposon-based molecular markers for grapevine species and cultivars identification in TREE GENETICS & GENOMES
  • 2017. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis in PCR
  • 2017-12. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices in SCIENTIFIC REPORTS
  • 2017. In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching in PCR
  • 2010-11. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin in THEORETICAL AND APPLIED GENETICS
  • 2018-12. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species in BMC PLANT BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10709-019-00055-5

    DOI

    http://dx.doi.org/10.1007/s10709-019-00055-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112222018

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30783944


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Speciation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repetitive Sequences, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vitis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kuban State Agrarian University", 
              "id": "https://www.grid.ac/institutes/grid.445489.0", 
              "name": [
                "Department of Viticulture, Kuban State Agrarian University, 350044, Krasnodar, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Milovanov", 
            "givenName": "Alexander", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kuban State Agrarian University", 
              "id": "https://www.grid.ac/institutes/grid.445489.0", 
              "name": [
                "Department of Viticulture, Kuban State Agrarian University, 350044, Krasnodar, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zvyagin", 
            "givenName": "Andrey", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Laboratory of Plants Genomics and Bioinformatics, RSE \u201cNational Center for Biotechnology\u201d, 010000, Astana, Kazakhstan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daniyarov", 
            "givenName": "Asset", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Department of Agricultural Sciences, Viikki Plant Science Centre and Helsinki Sustainability Centre, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalendar", 
            "givenName": "Ruslan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kuban State Agrarian University", 
              "id": "https://www.grid.ac/institutes/grid.445489.0", 
              "name": [
                "Department of Viticulture, Kuban State Agrarian University, 350044, Krasnodar, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Troshin", 
            "givenName": "Leonid", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.bse.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000070764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-1988-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002604186", 
              "https://doi.org/10.1007/s00122-012-1988-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.76.10.5269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002874048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genet.33.1.479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004335146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1009363108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006959730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-010-1398-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010269149", 
              "https://doi.org/10.1007/s00122-010-1398-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-010-1398-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010269149", 
              "https://doi.org/10.1007/s00122-010-1398-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.201600068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012125104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msw054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012564990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bse.2013.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013271190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-014-2422-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015091735", 
              "https://doi.org/10.1007/s00122-014-2422-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1439-0523.2002.00762.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016350875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2006.01225.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016395553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2006.01225.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016395553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scienta.2014.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021521170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jsfa.7769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023302677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-010-1411-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023394353", 
              "https://doi.org/10.1007/s00122-010-1411-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026432648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-009-0263-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030236275", 
              "https://doi.org/10.1007/s11295-009-0263-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-009-0263-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030236275", 
              "https://doi.org/10.1007/s11295-009-0263-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00222076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030417202", 
              "https://doi.org/10.1007/bf00222076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-015-1537-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035781284", 
              "https://doi.org/10.1007/s10681-015-1537-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036005113", 
              "https://doi.org/10.1038/nrg2337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1539-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036146132", 
              "https://doi.org/10.1007/s00122-011-1539-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10722-015-0322-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036342119", 
              "https://doi.org/10.1007/s10722-015-0322-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0203-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037578502", 
              "https://doi.org/10.1007/s00122-005-0203-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0203-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037578502", 
              "https://doi.org/10.1007/s00122-005-0203-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2006.03049.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042398495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0510-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043666485", 
              "https://doi.org/10.1186/s12870-015-0510-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0510-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043666485", 
              "https://doi.org/10.1186/s12870-015-0510-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12033-011-9470-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045960965", 
              "https://doi.org/10.1007/s12033-011-9470-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scienta.2012.05.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047250302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-767-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049597200", 
              "https://doi.org/10.1007/978-1-62703-767-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0032973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049604474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14620316.2013.11513040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049801639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0597-84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050980286", 
              "https://doi.org/10.1038/ng0597-84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcp298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059395114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5433.1562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062566509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21475/ajcs.2016.10.05.p7491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069106098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5539/jas.v4n11p111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072959626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep44463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084132353", 
              "https://doi.org/10.1038/srep44463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-7060-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085579161", 
              "https://doi.org/10.1007/978-1-4939-7060-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-7060-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085586352", 
              "https://doi.org/10.1007/978-1-4939-7060-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/117693430500100003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092625821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/117693430500100003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092625821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-017-1223-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100191776", 
              "https://doi.org/10.1186/s12870-017-1223-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0199495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105046870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/agronomy8070107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105215898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/fp18098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107390115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/fp18098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107390115"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Cultivated grapevine (Vitis vinifera L. ssp. sativa D.C.) is one of the oldest agricultural crops, each variety comprising an array of clones obtained by vegetative propagation from a selected vine grown from a single seedling. Most clones within a variety are identical, but some show a different form of accession, giving rise to new divergent phenotypes. Understanding the associations among the genotypes within a variety is crucial to efficient management and effective grapevine improvement. Inter-primer binding-site (iPBS) markers may aid in determining the new clones inside closely related genotypes. Following this idea, iPBS markers were used to assess the genetic variation of 33 grapevine genotypes collected from Russia. We used molecular markers to identify the differences among and within five grapevine clonal populations and analysed the variation, using clustering and statistical approaches. Four of a total of 30 PBS primers were selected, based on amplification efficiency. Polymerase chain reaction (PCR) with PBS primers resulted in a total of 1412 bands ranging from 300 to 6000\u00a0bp, with a polymorphism ratio of 44%, ranging from 58 to 75 bands per group. In total, were identified seven private bands in 33 genotypes. Results of molecular variance analysis showed that 40% of the total variation was observed within groups and only 60% between groups. Cluster analysis clearly showed that grapevine genotypes are highly divergent and possess abundant genetic diversities. The iPBS PCR-based genome fingerprinting technology used in this study effectively differentiated genotypes into five grapevine groups and indicated that iPBS markers are useful tools for clonal selection. The number of differences between clones was sufficient to identify them as separate clones of studied varieties containing unique mutations. Our previous phenotypic and phenological studies have confirmed that these genotypes differ from those of maternal plants. This work emphasized the need for a better understanding of the genotypic differences among closely related varieties of grapevine and has implications for the management of its selection processes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10709-019-00055-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1017127", 
            "issn": [
              "0016-6707", 
              "1573-6857"
            ], 
            "name": "Genetica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "147"
          }
        ], 
        "name": "Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers", 
        "pagination": "91-101", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "106cef6b8bab7da97575892023f130cbe429780a9d1db53dd641d9a874d77457"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30783944"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0370740"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10709-019-00055-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112222018"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10709-019-00055-5", 
          "https://app.dimensions.ai/details/publication/pub.1112222018"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72868_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10709-019-00055-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10709-019-00055-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10709-019-00055-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10709-019-00055-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10709-019-00055-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    273 TRIPLES      21 PREDICATES      79 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10709-019-00055-5 schema:about N0db05fac5334422092d712e112b203d8
    2 N35567834b8b344a78c984e2e09cc13fe
    3 N3eed4096119a4663b7f1add18086b9dd
    4 N57b6003df8ea4406835fa87d75d36ff2
    5 N6f5b5e5b9b59446cb04b1f1e716e6081
    6 Nf2f37ef4a26841ab94539c4ae0bdaf0e
    7 Nffab16d1a8c1443fb30ec421b7bf22cf
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 schema:author N1ceee5b08de44713b55b3fb9b93e7c9a
    11 schema:citation sg:pub.10.1007/978-1-4939-7060-5_1
    12 sg:pub.10.1007/978-1-4939-7060-5_2
    13 sg:pub.10.1007/978-1-62703-767-9_12
    14 sg:pub.10.1007/bf00222076
    15 sg:pub.10.1007/s00122-005-0203-0
    16 sg:pub.10.1007/s00122-010-1398-2
    17 sg:pub.10.1007/s00122-010-1411-9
    18 sg:pub.10.1007/s00122-011-1539-2
    19 sg:pub.10.1007/s00122-012-1988-2
    20 sg:pub.10.1007/s00122-014-2422-8
    21 sg:pub.10.1007/s10681-015-1537-6
    22 sg:pub.10.1007/s10722-015-0322-7
    23 sg:pub.10.1007/s11295-009-0263-4
    24 sg:pub.10.1007/s12033-011-9470-y
    25 sg:pub.10.1038/ng0597-84
    26 sg:pub.10.1038/nrg2337
    27 sg:pub.10.1038/srep44463
    28 sg:pub.10.1186/s12870-015-0510-9
    29 sg:pub.10.1186/s12870-017-1223-z
    30 https://doi.org/10.1002/elps.201600068
    31 https://doi.org/10.1002/jsfa.7769
    32 https://doi.org/10.1016/j.bse.2013.10.008
    33 https://doi.org/10.1016/j.bse.2015.06.017
    34 https://doi.org/10.1016/j.scienta.2012.05.022
    35 https://doi.org/10.1016/j.scienta.2014.03.010
    36 https://doi.org/10.1046/j.1439-0523.2002.00762.x
    37 https://doi.org/10.1071/fp18098
    38 https://doi.org/10.1073/pnas.1009363108
    39 https://doi.org/10.1073/pnas.76.10.5269
    40 https://doi.org/10.1080/14620316.2013.11513040
    41 https://doi.org/10.1093/aob/mcp298
    42 https://doi.org/10.1093/bioinformatics/bts460
    43 https://doi.org/10.1093/molbev/msw054
    44 https://doi.org/10.1111/j.1365-294x.2006.03049.x
    45 https://doi.org/10.1111/j.1471-8286.2006.01225.x
    46 https://doi.org/10.1126/science.285.5433.1562
    47 https://doi.org/10.1146/annurev.genet.33.1.479
    48 https://doi.org/10.1177/117693430500100003
    49 https://doi.org/10.1371/journal.pone.0032973
    50 https://doi.org/10.1371/journal.pone.0199495
    51 https://doi.org/10.21475/ajcs.2016.10.05.p7491
    52 https://doi.org/10.3390/agronomy8070107
    53 https://doi.org/10.5539/jas.v4n11p111
    54 schema:datePublished 2019-02
    55 schema:datePublishedReg 2019-02-01
    56 schema:description Cultivated grapevine (Vitis vinifera L. ssp. sativa D.C.) is one of the oldest agricultural crops, each variety comprising an array of clones obtained by vegetative propagation from a selected vine grown from a single seedling. Most clones within a variety are identical, but some show a different form of accession, giving rise to new divergent phenotypes. Understanding the associations among the genotypes within a variety is crucial to efficient management and effective grapevine improvement. Inter-primer binding-site (iPBS) markers may aid in determining the new clones inside closely related genotypes. Following this idea, iPBS markers were used to assess the genetic variation of 33 grapevine genotypes collected from Russia. We used molecular markers to identify the differences among and within five grapevine clonal populations and analysed the variation, using clustering and statistical approaches. Four of a total of 30 PBS primers were selected, based on amplification efficiency. Polymerase chain reaction (PCR) with PBS primers resulted in a total of 1412 bands ranging from 300 to 6000 bp, with a polymorphism ratio of 44%, ranging from 58 to 75 bands per group. In total, were identified seven private bands in 33 genotypes. Results of molecular variance analysis showed that 40% of the total variation was observed within groups and only 60% between groups. Cluster analysis clearly showed that grapevine genotypes are highly divergent and possess abundant genetic diversities. The iPBS PCR-based genome fingerprinting technology used in this study effectively differentiated genotypes into five grapevine groups and indicated that iPBS markers are useful tools for clonal selection. The number of differences between clones was sufficient to identify them as separate clones of studied varieties containing unique mutations. Our previous phenotypic and phenological studies have confirmed that these genotypes differ from those of maternal plants. This work emphasized the need for a better understanding of the genotypic differences among closely related varieties of grapevine and has implications for the management of its selection processes.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf N0372ba1f8b544c3b8f81728293c65e6c
    61 Nd6f0ce5c482a42b38fc9ec59229d3385
    62 sg:journal.1017127
    63 schema:name Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers
    64 schema:pagination 91-101
    65 schema:productId N2ca915d7fa054e61973d737999044f53
    66 N612f5ecd0ad742dc81faaa8f027cf063
    67 Na9f8d1c10f1447a3ba4ad944955e24ec
    68 Nca4c04aeff004ed3b999c3a7f47f9c8f
    69 Nd74d047b0675494d8d602ef8fe310281
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112222018
    71 https://doi.org/10.1007/s10709-019-00055-5
    72 schema:sdDatePublished 2019-04-11T12:55
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N7f3097081787492eb7dd1c9f81e8e613
    75 schema:url https://link.springer.com/10.1007%2Fs10709-019-00055-5
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N0372ba1f8b544c3b8f81728293c65e6c schema:issueNumber 1
    80 rdf:type schema:PublicationIssue
    81 N0a80bd9eb9cf4958840ff7ca68e7b054 rdf:first N31a34703b18c45f9a775bf09c4a2b626
    82 rdf:rest Nfabfc4861c0d419a80ba3f92234d2c26
    83 N0db05fac5334422092d712e112b203d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Phylogeny
    85 rdf:type schema:DefinedTerm
    86 N1ceee5b08de44713b55b3fb9b93e7c9a rdf:first N9c5f98f889a048e78bd5f6374128f038
    87 rdf:rest N881c585b95344d3d8fe55316bc7d71da
    88 N2ca915d7fa054e61973d737999044f53 schema:name pubmed_id
    89 schema:value 30783944
    90 rdf:type schema:PropertyValue
    91 N31a34703b18c45f9a775bf09c4a2b626 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    92 schema:familyName Kalendar
    93 schema:givenName Ruslan
    94 rdf:type schema:Person
    95 N35567834b8b344a78c984e2e09cc13fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Selection, Genetic
    97 rdf:type schema:DefinedTerm
    98 N3eed4096119a4663b7f1add18086b9dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Repetitive Sequences, Nucleic Acid
    100 rdf:type schema:DefinedTerm
    101 N57b6003df8ea4406835fa87d75d36ff2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Genetic Speciation
    103 rdf:type schema:DefinedTerm
    104 N612f5ecd0ad742dc81faaa8f027cf063 schema:name readcube_id
    105 schema:value 106cef6b8bab7da97575892023f130cbe429780a9d1db53dd641d9a874d77457
    106 rdf:type schema:PropertyValue
    107 N6dd24f2529be48aeaed935fd191dd2e3 schema:affiliation N922a0bede8ea442a98f113a0cc985a9e
    108 schema:familyName Daniyarov
    109 schema:givenName Asset
    110 rdf:type schema:Person
    111 N6f5b5e5b9b59446cb04b1f1e716e6081 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Genotype
    113 rdf:type schema:DefinedTerm
    114 N7f3097081787492eb7dd1c9f81e8e613 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 N881c585b95344d3d8fe55316bc7d71da rdf:first Nda45677eefc74ce3aa74d98f739b5fad
    117 rdf:rest Na380ea6386804e7880886664dec15d9b
    118 N922a0bede8ea442a98f113a0cc985a9e schema:name Laboratory of Plants Genomics and Bioinformatics, RSE “National Center for Biotechnology”, 010000, Astana, Kazakhstan
    119 rdf:type schema:Organization
    120 N9c5f98f889a048e78bd5f6374128f038 schema:affiliation https://www.grid.ac/institutes/grid.445489.0
    121 schema:familyName Milovanov
    122 schema:givenName Alexander
    123 rdf:type schema:Person
    124 Na380ea6386804e7880886664dec15d9b rdf:first N6dd24f2529be48aeaed935fd191dd2e3
    125 rdf:rest N0a80bd9eb9cf4958840ff7ca68e7b054
    126 Na9f8d1c10f1447a3ba4ad944955e24ec schema:name nlm_unique_id
    127 schema:value 0370740
    128 rdf:type schema:PropertyValue
    129 Nc3650865e9b14ec2a874058a74baf941 schema:affiliation https://www.grid.ac/institutes/grid.445489.0
    130 schema:familyName Troshin
    131 schema:givenName Leonid
    132 rdf:type schema:Person
    133 Nca4c04aeff004ed3b999c3a7f47f9c8f schema:name doi
    134 schema:value 10.1007/s10709-019-00055-5
    135 rdf:type schema:PropertyValue
    136 Nd6f0ce5c482a42b38fc9ec59229d3385 schema:volumeNumber 147
    137 rdf:type schema:PublicationVolume
    138 Nd74d047b0675494d8d602ef8fe310281 schema:name dimensions_id
    139 schema:value pub.1112222018
    140 rdf:type schema:PropertyValue
    141 Nda45677eefc74ce3aa74d98f739b5fad schema:affiliation https://www.grid.ac/institutes/grid.445489.0
    142 schema:familyName Zvyagin
    143 schema:givenName Andrey
    144 rdf:type schema:Person
    145 Nf2f37ef4a26841ab94539c4ae0bdaf0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Polymorphism, Genetic
    147 rdf:type schema:DefinedTerm
    148 Nfabfc4861c0d419a80ba3f92234d2c26 rdf:first Nc3650865e9b14ec2a874058a74baf941
    149 rdf:rest rdf:nil
    150 Nffab16d1a8c1443fb30ec421b7bf22cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Vitis
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Biological Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Genetics
    158 rdf:type schema:DefinedTerm
    159 sg:journal.1017127 schema:issn 0016-6707
    160 1573-6857
    161 schema:name Genetica
    162 rdf:type schema:Periodical
    163 sg:pub.10.1007/978-1-4939-7060-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085586352
    164 https://doi.org/10.1007/978-1-4939-7060-5_1
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/978-1-4939-7060-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085579161
    167 https://doi.org/10.1007/978-1-4939-7060-5_2
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-1-62703-767-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049597200
    170 https://doi.org/10.1007/978-1-62703-767-9_12
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bf00222076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030417202
    173 https://doi.org/10.1007/bf00222076
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00122-005-0203-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037578502
    176 https://doi.org/10.1007/s00122-005-0203-0
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00122-010-1398-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010269149
    179 https://doi.org/10.1007/s00122-010-1398-2
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00122-010-1411-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023394353
    182 https://doi.org/10.1007/s00122-010-1411-9
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00122-011-1539-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036146132
    185 https://doi.org/10.1007/s00122-011-1539-2
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00122-012-1988-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002604186
    188 https://doi.org/10.1007/s00122-012-1988-2
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00122-014-2422-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015091735
    191 https://doi.org/10.1007/s00122-014-2422-8
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10681-015-1537-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781284
    194 https://doi.org/10.1007/s10681-015-1537-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10722-015-0322-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036342119
    197 https://doi.org/10.1007/s10722-015-0322-7
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11295-009-0263-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030236275
    200 https://doi.org/10.1007/s11295-009-0263-4
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s12033-011-9470-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045960965
    203 https://doi.org/10.1007/s12033-011-9470-y
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ng0597-84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050980286
    206 https://doi.org/10.1038/ng0597-84
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nrg2337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036005113
    209 https://doi.org/10.1038/nrg2337
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/srep44463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084132353
    212 https://doi.org/10.1038/srep44463
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/s12870-015-0510-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043666485
    215 https://doi.org/10.1186/s12870-015-0510-9
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/s12870-017-1223-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100191776
    218 https://doi.org/10.1186/s12870-017-1223-z
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1002/elps.201600068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012125104
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1002/jsfa.7769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023302677
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.bse.2013.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013271190
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.bse.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000070764
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.scienta.2012.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047250302
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.scienta.2014.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021521170
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1046/j.1439-0523.2002.00762.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016350875
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1071/fp18098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107390115
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1073/pnas.1009363108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006959730
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.76.10.5269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002874048
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1080/14620316.2013.11513040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049801639
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/aob/mcp298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059395114
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/bioinformatics/bts460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026432648
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/molbev/msw054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012564990
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1111/j.1365-294x.2006.03049.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042398495
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1111/j.1471-8286.2006.01225.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016395553
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1126/science.285.5433.1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566509
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1146/annurev.genet.33.1.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004335146
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1177/117693430500100003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092625821
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1371/journal.pone.0032973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049604474
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1371/journal.pone.0199495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105046870
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.21475/ajcs.2016.10.05.p7491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069106098
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.3390/agronomy8070107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105215898
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.5539/jas.v4n11p111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072959626
    267 rdf:type schema:CreativeWork
    268 https://www.grid.ac/institutes/grid.445489.0 schema:alternateName Kuban State Agrarian University
    269 schema:name Department of Viticulture, Kuban State Agrarian University, 350044, Krasnodar, Russia
    270 rdf:type schema:Organization
    271 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
    272 schema:name Department of Agricultural Sciences, Viikki Plant Science Centre and Helsinki Sustainability Centre, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland
    273 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...