Genome-wide DNA polymorphism and transcriptome analysis of an early-maturing rice mutant View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Sun-Goo Hwang, Jin Gyu Hwang, Dong Sub Kim, Cheol Seong Jang

ABSTRACT

In order to develop a rice population with improved important traits such as flowering time, we developed 2,911 M2 targeting-induced local lesions in genomes (TILLING) lines by irradiating rice seeds with γ-rays. In all, 15 M3 lines were obtained from 3 different M2 lines that exhibited an early-maturing phenotype: these plants matured approximately 25 days faster than wild-type (WT) plants. To identify genome-wide DNA polymorphisms, we performed whole-genome resequencing of both the plant types, i.e., WT and early-maturing TILLING 1 (EMT1), and obtained mapped reads of 118,488,245 bp (99.53 %) and 128,489,860 bp (99.72 %), respectively; Nipponbare was used as the reference genome. We obtained 63,648 and 147,728 single nucleotide polymorphisms (SNPs) and 33,474 and 31,082 insertions and deletions (InDels) for the WT and EMT1, respectively. Interestingly, there was a higher number of SNPs (2.6-fold) and slightly lower number of InDels (0.9-fold) in EMT1 than in WT. The expression of at least 202 structurally altered genes was changed in EMT1, and functional enrichment analysis of these genes revealed that their molecular functions were related to flower development. These results might provide a critical insight into the regulatory pathways of rice flowering. More... »

PAGES

73-85

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10709-013-9755-0

DOI

http://dx.doi.org/10.1007/s10709-013-9755-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023021721

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24415207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oryza", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, 200-713, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Sun-Goo", 
        "id": "sg:person.01264664301.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264664301.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, 200-713, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jin Gyu", 
        "id": "sg:person.01013074746.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013074746.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Atomic Energy Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.418964.6", 
          "name": [
            "Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong, 580-185, Jeongeup, Jeonbuk, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dong Sub", 
        "id": "sg:person.01117656110.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117656110.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, 200-713, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Cheol Seong", 
        "id": "sg:person.0774561065.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774561065.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:euph.0000009509.78515.8e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000795560", 
          "https://doi.org/10.1023/b:euph.0000009509.78515.8e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-009-9576-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003207874", 
          "https://doi.org/10.1007/s11103-009-9576-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-009-9576-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003207874", 
          "https://doi.org/10.1007/s11103-009-9576-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plantsci.2004.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004824036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005635967", 
          "https://doi.org/10.1038/ng.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10709-011-9604-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009277386", 
          "https://doi.org/10.1007/s10709-011-9604-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0030952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014065518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.00998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016368915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(02)00812-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016606848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.02933.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017803518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.02933.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017803518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0010065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018472527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-3-r22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081519", 
          "https://doi.org/10.1186/gb-2012-13-3-r22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11248-005-2770-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019605698", 
          "https://doi.org/10.1007/s11248-005-2770-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11248-005-2770-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019605698", 
          "https://doi.org/10.1007/s11248-005-2770-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.142190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020502181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pcr003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023752314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7652.2011.00676.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027846584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1189604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029550347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.977903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031498613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0030619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031659477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.12.12.2473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032659407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.21.9717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037256015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.81.24.8014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037339771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.21.4407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045868449", 
          "https://doi.org/10.1186/1471-2164-11-267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3871242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070469041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.001362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075064427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079750403"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "In order to develop a rice population with improved important traits such as flowering time, we developed 2,911 M2 targeting-induced local lesions in genomes (TILLING) lines by irradiating rice seeds with \u03b3-rays. In all, 15 M3 lines were obtained from 3 different M2 lines that exhibited an early-maturing phenotype: these plants matured approximately 25 days faster than wild-type (WT) plants. To identify genome-wide DNA polymorphisms, we performed whole-genome resequencing of both the plant types, i.e., WT and early-maturing TILLING 1 (EMT1), and obtained mapped reads of 118,488,245 bp (99.53 %) and 128,489,860 bp (99.72 %), respectively; Nipponbare was used as the reference genome. We obtained 63,648 and 147,728 single nucleotide polymorphisms (SNPs) and 33,474 and 31,082 insertions and deletions (InDels) for the WT and EMT1, respectively. Interestingly, there was a higher number of SNPs (2.6-fold) and slightly lower number of InDels (0.9-fold) in EMT1 than in WT. The expression of at least 202 structurally altered genes was changed in EMT1, and functional enrichment analysis of these genes revealed that their molecular functions were related to flower development. These results might provide a critical insight into the regulatory pathways of rice flowering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10709-013-9755-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017127", 
        "issn": [
          "0016-6707", 
          "1573-6857"
        ], 
        "name": "Genetica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "142"
      }
    ], 
    "name": "Genome-wide DNA polymorphism and transcriptome analysis of an early-maturing rice mutant", 
    "pagination": "73-85", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dae4e00aca35f63b353749a443466481b96d6330b3b6710902473c5a9e88427"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24415207"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0370740"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10709-013-9755-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023021721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10709-013-9755-0", 
      "https://app.dimensions.ai/details/publication/pub.1023021721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10709-013-9755-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10709-013-9755-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10709-013-9755-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10709-013-9755-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10709-013-9755-0'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      67 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10709-013-9755-0 schema:about N02d18f5b81b5458d80f25d78c6f041f0
2 N31378b5eed874089ab4a0b79c04276d0
3 N3d3d6c8d09b1447f8e94aa9b1222152a
4 N4b2595f4d9c14439b1e3c0c6539d62d8
5 N6bcf2dc9c6674034b097de62ec75067a
6 N76feefc5e68d45a9a989a02c0a40c03f
7 Nbc231e8464fe4c88957e069997aa1977
8 Nc8c45a3dba5a4ee8a2842ea5d31e1cf8
9 Ne7a70cae3638469e9ad2db6059e8c961
10 Nfc023caf70ca414c9b7f4597f87e6383
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N37b04b6ae4e64dc297cd573f8533e307
14 schema:citation sg:pub.10.1007/s10709-011-9604-y
15 sg:pub.10.1007/s11103-009-9576-9
16 sg:pub.10.1007/s11248-005-2770-x
17 sg:pub.10.1023/b:euph.0000009509.78515.8e
18 sg:pub.10.1038/ng.143
19 sg:pub.10.1186/1471-2164-11-267
20 sg:pub.10.1186/gb-2012-13-3-r22
21 https://doi.org/10.1016/j.plantsci.2004.03.029
22 https://doi.org/10.1016/s0092-8674(02)00812-7
23 https://doi.org/10.1073/pnas.81.24.8014
24 https://doi.org/10.1073/pnas.92.21.9717
25 https://doi.org/10.1093/bioinformatics/btp352
26 https://doi.org/10.1093/bioinformatics/btp698
27 https://doi.org/10.1093/nar/23.21.4407
28 https://doi.org/10.1093/oxfordjournals.molbev.a040410
29 https://doi.org/10.1093/pcp/pcr003
30 https://doi.org/10.1101/gad.1189604
31 https://doi.org/10.1101/gr.977903
32 https://doi.org/10.1104/pp.109.142190
33 https://doi.org/10.1105/tpc.001362
34 https://doi.org/10.1105/tpc.12.12.2473
35 https://doi.org/10.1111/j.1467-7652.2011.00676.x
36 https://doi.org/10.1111/j.1469-8137.2009.02933.x
37 https://doi.org/10.1242/dev.00998
38 https://doi.org/10.1371/journal.pone.0010065
39 https://doi.org/10.1371/journal.pone.0030619
40 https://doi.org/10.1371/journal.pone.0030952
41 https://doi.org/10.2307/3871242
42 schema:datePublished 2014-02
43 schema:datePublishedReg 2014-02-01
44 schema:description In order to develop a rice population with improved important traits such as flowering time, we developed 2,911 M2 targeting-induced local lesions in genomes (TILLING) lines by irradiating rice seeds with γ-rays. In all, 15 M3 lines were obtained from 3 different M2 lines that exhibited an early-maturing phenotype: these plants matured approximately 25 days faster than wild-type (WT) plants. To identify genome-wide DNA polymorphisms, we performed whole-genome resequencing of both the plant types, i.e., WT and early-maturing TILLING 1 (EMT1), and obtained mapped reads of 118,488,245 bp (99.53 %) and 128,489,860 bp (99.72 %), respectively; Nipponbare was used as the reference genome. We obtained 63,648 and 147,728 single nucleotide polymorphisms (SNPs) and 33,474 and 31,082 insertions and deletions (InDels) for the WT and EMT1, respectively. Interestingly, there was a higher number of SNPs (2.6-fold) and slightly lower number of InDels (0.9-fold) in EMT1 than in WT. The expression of at least 202 structurally altered genes was changed in EMT1, and functional enrichment analysis of these genes revealed that their molecular functions were related to flower development. These results might provide a critical insight into the regulatory pathways of rice flowering.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N4d9482c2ab3649f68775ec0b7e70b17e
49 Nf024b65b7af6474daae8f16157723161
50 sg:journal.1017127
51 schema:name Genome-wide DNA polymorphism and transcriptome analysis of an early-maturing rice mutant
52 schema:pagination 73-85
53 schema:productId N690652b11e464632adcaa5dd3e4e89bf
54 N8fbb80dbdb644d59810f33a9da597726
55 N976df7eb570543f6b4f13d5a5dfedb64
56 Nb07190e19f3f4dcfb213f2446ca94d55
57 Nfe622972c6764488ab0197fc057ccfda
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023021721
59 https://doi.org/10.1007/s10709-013-9755-0
60 schema:sdDatePublished 2019-04-11T01:11
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N159dff32115c438086886cae51f94dd9
63 schema:url http://link.springer.com/10.1007%2Fs10709-013-9755-0
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N02d18f5b81b5458d80f25d78c6f041f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Polymorphism, Single Nucleotide
69 rdf:type schema:DefinedTerm
70 N159dff32115c438086886cae51f94dd9 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N16f8e107441b450d928d183d180e8f8c rdf:first sg:person.0774561065.60
73 rdf:rest rdf:nil
74 N2e7e735d0c5049cc92be97bf2adcbab9 rdf:first sg:person.01013074746.45
75 rdf:rest N6eaaabf0bad24a958bd7ecc0de878f6d
76 N31378b5eed874089ab4a0b79c04276d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Sequence Analysis, DNA
78 rdf:type schema:DefinedTerm
79 N37b04b6ae4e64dc297cd573f8533e307 rdf:first sg:person.01264664301.22
80 rdf:rest N2e7e735d0c5049cc92be97bf2adcbab9
81 N3d3d6c8d09b1447f8e94aa9b1222152a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Genome, Plant
83 rdf:type schema:DefinedTerm
84 N4b2595f4d9c14439b1e3c0c6539d62d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Oryza
86 rdf:type schema:DefinedTerm
87 N4d9482c2ab3649f68775ec0b7e70b17e schema:volumeNumber 142
88 rdf:type schema:PublicationVolume
89 N690652b11e464632adcaa5dd3e4e89bf schema:name dimensions_id
90 schema:value pub.1023021721
91 rdf:type schema:PropertyValue
92 N6bcf2dc9c6674034b097de62ec75067a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Gene Expression Regulation, Plant
94 rdf:type schema:DefinedTerm
95 N6eaaabf0bad24a958bd7ecc0de878f6d rdf:first sg:person.01117656110.36
96 rdf:rest N16f8e107441b450d928d183d180e8f8c
97 N76feefc5e68d45a9a989a02c0a40c03f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Polymorphism, Genetic
99 rdf:type schema:DefinedTerm
100 N8fbb80dbdb644d59810f33a9da597726 schema:name nlm_unique_id
101 schema:value 0370740
102 rdf:type schema:PropertyValue
103 N976df7eb570543f6b4f13d5a5dfedb64 schema:name readcube_id
104 schema:value 6dae4e00aca35f63b353749a443466481b96d6330b3b6710902473c5a9e88427
105 rdf:type schema:PropertyValue
106 Nb07190e19f3f4dcfb213f2446ca94d55 schema:name pubmed_id
107 schema:value 24415207
108 rdf:type schema:PropertyValue
109 Nbc231e8464fe4c88957e069997aa1977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Genetic Variation
111 rdf:type schema:DefinedTerm
112 Nc8c45a3dba5a4ee8a2842ea5d31e1cf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Chromosomes, Plant
114 rdf:type schema:DefinedTerm
115 Ne7a70cae3638469e9ad2db6059e8c961 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Gene Expression Profiling
117 rdf:type schema:DefinedTerm
118 Nf024b65b7af6474daae8f16157723161 schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 Nfc023caf70ca414c9b7f4597f87e6383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name DNA, Plant
122 rdf:type schema:DefinedTerm
123 Nfe622972c6764488ab0197fc057ccfda schema:name doi
124 schema:value 10.1007/s10709-013-9755-0
125 rdf:type schema:PropertyValue
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
130 schema:name Genetics
131 rdf:type schema:DefinedTerm
132 sg:journal.1017127 schema:issn 0016-6707
133 1573-6857
134 schema:name Genetica
135 rdf:type schema:Periodical
136 sg:person.01013074746.45 schema:affiliation https://www.grid.ac/institutes/grid.412010.6
137 schema:familyName Hwang
138 schema:givenName Jin Gyu
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013074746.45
140 rdf:type schema:Person
141 sg:person.01117656110.36 schema:affiliation https://www.grid.ac/institutes/grid.418964.6
142 schema:familyName Kim
143 schema:givenName Dong Sub
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117656110.36
145 rdf:type schema:Person
146 sg:person.01264664301.22 schema:affiliation https://www.grid.ac/institutes/grid.412010.6
147 schema:familyName Hwang
148 schema:givenName Sun-Goo
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264664301.22
150 rdf:type schema:Person
151 sg:person.0774561065.60 schema:affiliation https://www.grid.ac/institutes/grid.412010.6
152 schema:familyName Jang
153 schema:givenName Cheol Seong
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774561065.60
155 rdf:type schema:Person
156 sg:pub.10.1007/s10709-011-9604-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009277386
157 https://doi.org/10.1007/s10709-011-9604-y
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11103-009-9576-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003207874
160 https://doi.org/10.1007/s11103-009-9576-9
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11248-005-2770-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019605698
163 https://doi.org/10.1007/s11248-005-2770-x
164 rdf:type schema:CreativeWork
165 sg:pub.10.1023/b:euph.0000009509.78515.8e schema:sameAs https://app.dimensions.ai/details/publication/pub.1000795560
166 https://doi.org/10.1023/b:euph.0000009509.78515.8e
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ng.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005635967
169 https://doi.org/10.1038/ng.143
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2164-11-267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045868449
172 https://doi.org/10.1186/1471-2164-11-267
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/gb-2012-13-3-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081519
175 https://doi.org/10.1186/gb-2012-13-3-r22
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.plantsci.2004.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004824036
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0092-8674(02)00812-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016606848
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.81.24.8014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339771
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.92.21.9717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037256015
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/nar/23.21.4407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685674
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/oxfordjournals.molbev.a040410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079750403
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/pcp/pcr003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023752314
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1101/gad.1189604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029550347
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1101/gr.977903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031498613
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1104/pp.109.142190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020502181
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1105/tpc.001362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075064427
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1105/tpc.12.12.2473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032659407
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1467-7652.2011.00676.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027846584
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1469-8137.2009.02933.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017803518
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1242/dev.00998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016368915
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1371/journal.pone.0010065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018472527
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1371/journal.pone.0030619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031659477
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1371/journal.pone.0030952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014065518
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2307/3871242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070469041
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.412010.6 schema:alternateName Kangwon National University
220 schema:name Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, 200-713, Chuncheon, South Korea
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.418964.6 schema:alternateName Korea Atomic Energy Research Institute
223 schema:name Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong, 580-185, Jeongeup, Jeonbuk, South Korea
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...