Developing transgenic Anopheles mosquitoes for the sterile insect technique View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09-07

AUTHORS

Tony Nolan, Philippos Papathanos, Nikolai Windbichler, Kalle Magnusson, Jason Benton, Flaminia Catteruccia, Andrea Crisanti

ABSTRACT

In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed. More... »

PAGES

33-39

References to SciGraph publications

  • 2009-01-27. Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae) in BMC BIOLOGY
  • 2004-08-08. Post-integration stabilization of a transposon vector by terminal sequence deletion in Drosophila melanogaster in NATURE BIOTECHNOLOGY
  • 2005-01-01. Genetic Sexing Strains in Mediterranean Fruit Fly, an Example for Other Species Amenable to Large-Scale Rearing for the Sterile Insect Technique in STERILE INSECT TECHNIQUE
  • 2005-01-01. Sterile Insect Quality in STERILE INSECT TECHNIQUE
  • 2002-09. Recombination Between Homologous Autosomes in Medfly (Ceratitis Capitata) Males: Type-1 Recombination and the Implications for the Stability of Genetic Sexing Strains in GENETICA
  • 2002-12-16. A transgene-based, embryo-specific lethality system for insect pest management in NATURE BIOTECHNOLOGY
  • 2007-02-18. Female-specific insect lethality engineered using alternative splicing in NATURE BIOTECHNOLOGY
  • 2005-10-09. An Anopheles transgenic sexing strain for vector control in NATURE BIOTECHNOLOGY
  • 2002-09. Sex Determination in Flies, Fruitflies and Butterflies in GENETICA
  • 2005-04-01. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly in NATURE BIOTECHNOLOGY
  • 2007-07-19. Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi in MOLECULAR GENETICS AND GENOMICS
  • 2007-01-01. Development of an Embryonic Lethality System in Mediterranean Fruit Fly Ceratitis capitata in AREA-WIDE CONTROL OF INSECT PESTS
  • 2009-07-02. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies in BMC MOLECULAR AND CELL BIOLOGY
  • 2000-06. Stable germline transformation of the malaria mosquito Anopheles stephensi in NATURE
  • 2005-01-01. History of the Sterile Insect Technique in STERILE INSECT TECHNIQUE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10709-010-9482-8

    DOI

    http://dx.doi.org/10.1007/s10709-010-9482-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034293327

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20821345


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0608", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Zoology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals, Genetically Modified", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anopheles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Transposable Elements", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Transfer Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mosquito Control", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nolan", 
            "givenName": "Tony", 
            "id": "sg:person.01034434475.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034434475.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Papathanos", 
            "givenName": "Philippos", 
            "id": "sg:person.01314155075.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314155075.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Windbichler", 
            "givenName": "Nikolai", 
            "id": "sg:person.01177726475.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177726475.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Magnusson", 
            "givenName": "Kalle", 
            "id": "sg:person.01120566061.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120566061.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benton", 
            "givenName": "Jason", 
            "id": "sg:person.01265111475.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265111475.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Catteruccia", 
            "givenName": "Flaminia", 
            "id": "sg:person.0635524645.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635524645.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06122, Perugia, Italy", 
              "id": "http://www.grid.ac/institutes/grid.9027.c", 
              "name": [
                "Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK", 
                "Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06122, Perugia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crisanti", 
            "givenName": "Andrea", 
            "id": "sg:person.01043550664.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043550664.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/1-4020-4051-2_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037404979", 
              "https://doi.org/10.1007/1-4020-4051-2_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2199-10-65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038230304", 
              "https://doi.org/10.1186/1471-2199-10-65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35016096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044128944", 
              "https://doi.org/10.1038/35016096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006635141", 
              "https://doi.org/10.1038/nbt1152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-6059-5_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021430455", 
              "https://doi.org/10.1007/978-1-4020-6059-5_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-4051-2_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050142483", 
              "https://doi.org/10.1007/1-4020-4051-2_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047278924", 
              "https://doi.org/10.1038/nbt1071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7007-7-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040926713", 
              "https://doi.org/10.1186/1741-7007-7-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-4051-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044255662", 
              "https://doi.org/10.1007/1-4020-4051-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020903523907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012043942", 
              "https://doi.org/10.1023/a:1020903523907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020911725724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026832791", 
              "https://doi.org/10.1023/a:1020911725724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031016193", 
              "https://doi.org/10.1038/nbt769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024024955", 
              "https://doi.org/10.1038/nbt1283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027418777", 
              "https://doi.org/10.1038/nbt1002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-007-0274-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007162310", 
              "https://doi.org/10.1007/s00438-007-0274-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-09-07", 
        "datePublishedReg": "2010-09-07", 
        "description": "In the last 10\u00a0years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10709-010-9482-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1017127", 
            "issn": [
              "0016-6707", 
              "1573-6857"
            ], 
            "name": "Genetica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "139"
          }
        ], 
        "keywords": [
          "sterile insect technique", 
          "induction of sterility", 
          "transgenic technology", 
          "novel vector control strategies", 
          "different transgenic approaches", 
          "radiation-induced sterility", 
          "Anopheles mosquitoes", 
          "sterile insects", 
          "classical genetics", 
          "strains of Anopheles", 
          "genome sequence", 
          "transgenic approaches", 
          "transgenic modification", 
          "transgenic constructs", 
          "population suppression", 
          "Anopheles gambiae", 
          "insects", 
          "malaria parasites", 
          "sterility", 
          "mosquitoes", 
          "vector control strategies", 
          "suitable strain", 
          "transgenesis", 
          "induction", 
          "deleterious effects", 
          "gambiae", 
          "genetics", 
          "biology", 
          "wild", 
          "mates", 
          "species", 
          "strains", 
          "Anopheles", 
          "parasites", 
          "sequence", 
          "availability", 
          "large number", 
          "laborious process", 
          "insights", 
          "suppression", 
          "constructs", 
          "modification", 
          "vector", 
          "near future", 
          "development", 
          "current approaches", 
          "progress", 
          "number", 
          "products", 
          "process", 
          "combination", 
          "strategies", 
          "capacity", 
          "tool", 
          "effect", 
          "approach", 
          "radiation", 
          "information", 
          "future", 
          "technology", 
          "requirements", 
          "control strategy", 
          "technique", 
          "years", 
          "advantages", 
          "construction", 
          "basic design", 
          "design", 
          "paper", 
          "reliable transgenic technology", 
          "insect technique", 
          "transgenic Anopheles mosquitoes"
        ], 
        "name": "Developing transgenic Anopheles mosquitoes for the sterile insect technique", 
        "pagination": "33-39", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034293327"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10709-010-9482-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20821345"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10709-010-9482-8", 
          "https://app.dimensions.ai/details/publication/pub.1034293327"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_507.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10709-010-9482-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10709-010-9482-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10709-010-9482-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10709-010-9482-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10709-010-9482-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    268 TRIPLES      22 PREDICATES      120 URIs      96 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10709-010-9482-8 schema:about N6d52661a97dc4395ad17bf937fb37eb1
    2 N7e380ec1220948ff85dac0bf36366a51
    3 N969ce4ae12ae4961979faca4782b9a99
    4 N9c9221c177d94bd3a168f44b28ef914e
    5 Nc0245ce4fcd24894920a4d6d9b760524
    6 Ncda51d3b98544733abd103dc1803ab61
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 anzsrc-for:0608
    10 schema:author N8da11d77e5904372910bc2f076bec680
    11 schema:citation sg:pub.10.1007/1-4020-4051-2_1
    12 sg:pub.10.1007/1-4020-4051-2_10
    13 sg:pub.10.1007/1-4020-4051-2_16
    14 sg:pub.10.1007/978-1-4020-6059-5_6
    15 sg:pub.10.1007/s00438-007-0274-5
    16 sg:pub.10.1023/a:1020903523907
    17 sg:pub.10.1023/a:1020911725724
    18 sg:pub.10.1038/35016096
    19 sg:pub.10.1038/nbt1002
    20 sg:pub.10.1038/nbt1071
    21 sg:pub.10.1038/nbt1152
    22 sg:pub.10.1038/nbt1283
    23 sg:pub.10.1038/nbt769
    24 sg:pub.10.1186/1471-2199-10-65
    25 sg:pub.10.1186/1741-7007-7-4
    26 schema:datePublished 2010-09-07
    27 schema:datePublishedReg 2010-09-07
    28 schema:description In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N6e3a0ef2d7384be4bedc2d46428ead2c
    33 N80728babc8dd4edcbee6e2c66ca66ca3
    34 sg:journal.1017127
    35 schema:keywords Anopheles
    36 Anopheles gambiae
    37 Anopheles mosquitoes
    38 advantages
    39 approach
    40 availability
    41 basic design
    42 biology
    43 capacity
    44 classical genetics
    45 combination
    46 construction
    47 constructs
    48 control strategy
    49 current approaches
    50 deleterious effects
    51 design
    52 development
    53 different transgenic approaches
    54 effect
    55 future
    56 gambiae
    57 genetics
    58 genome sequence
    59 induction
    60 induction of sterility
    61 information
    62 insect technique
    63 insects
    64 insights
    65 laborious process
    66 large number
    67 malaria parasites
    68 mates
    69 modification
    70 mosquitoes
    71 near future
    72 novel vector control strategies
    73 number
    74 paper
    75 parasites
    76 population suppression
    77 process
    78 products
    79 progress
    80 radiation
    81 radiation-induced sterility
    82 reliable transgenic technology
    83 requirements
    84 sequence
    85 species
    86 sterile insect technique
    87 sterile insects
    88 sterility
    89 strains
    90 strains of Anopheles
    91 strategies
    92 suitable strain
    93 suppression
    94 technique
    95 technology
    96 tool
    97 transgenesis
    98 transgenic Anopheles mosquitoes
    99 transgenic approaches
    100 transgenic constructs
    101 transgenic modification
    102 transgenic technology
    103 vector
    104 vector control strategies
    105 wild
    106 years
    107 schema:name Developing transgenic Anopheles mosquitoes for the sterile insect technique
    108 schema:pagination 33-39
    109 schema:productId N19648becb35a4677bcf6e73150b76c97
    110 N700da8e28966464695a832f50c9b06f0
    111 N7da5a6ba198c44eb8c491165e83be46c
    112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034293327
    113 https://doi.org/10.1007/s10709-010-9482-8
    114 schema:sdDatePublished 2021-12-01T19:22
    115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    116 schema:sdPublisher Nff0543961c9b4bf49e64d7cd49a9f3f2
    117 schema:url https://doi.org/10.1007/s10709-010-9482-8
    118 sgo:license sg:explorer/license/
    119 sgo:sdDataset articles
    120 rdf:type schema:ScholarlyArticle
    121 N19648becb35a4677bcf6e73150b76c97 schema:name dimensions_id
    122 schema:value pub.1034293327
    123 rdf:type schema:PropertyValue
    124 N40c931998aac43aab8bfb3fbb71cc6b9 rdf:first sg:person.01314155075.61
    125 rdf:rest N997e8c8bba754c209958daa6116ce66f
    126 N6d52661a97dc4395ad17bf937fb37eb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Anopheles
    128 rdf:type schema:DefinedTerm
    129 N6e3a0ef2d7384be4bedc2d46428ead2c schema:volumeNumber 139
    130 rdf:type schema:PublicationVolume
    131 N700da8e28966464695a832f50c9b06f0 schema:name doi
    132 schema:value 10.1007/s10709-010-9482-8
    133 rdf:type schema:PropertyValue
    134 N7da5a6ba198c44eb8c491165e83be46c schema:name pubmed_id
    135 schema:value 20821345
    136 rdf:type schema:PropertyValue
    137 N7e380ec1220948ff85dac0bf36366a51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Animals, Genetically Modified
    139 rdf:type schema:DefinedTerm
    140 N80728babc8dd4edcbee6e2c66ca66ca3 schema:issueNumber 1
    141 rdf:type schema:PublicationIssue
    142 N8d76b49f76bb4434be043b46a6321f90 rdf:first sg:person.01265111475.85
    143 rdf:rest Ndcff7fb5511c4daf83634bac7a088d4f
    144 N8da11d77e5904372910bc2f076bec680 rdf:first sg:person.01034434475.71
    145 rdf:rest N40c931998aac43aab8bfb3fbb71cc6b9
    146 N969ce4ae12ae4961979faca4782b9a99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Animals
    148 rdf:type schema:DefinedTerm
    149 N997e8c8bba754c209958daa6116ce66f rdf:first sg:person.01177726475.65
    150 rdf:rest Na46661c24fa5473e8dd37acaa7c3ef9b
    151 N9c9221c177d94bd3a168f44b28ef914e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name DNA Transposable Elements
    153 rdf:type schema:DefinedTerm
    154 Na46661c24fa5473e8dd37acaa7c3ef9b rdf:first sg:person.01120566061.08
    155 rdf:rest N8d76b49f76bb4434be043b46a6321f90
    156 Nc0245ce4fcd24894920a4d6d9b760524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Mosquito Control
    158 rdf:type schema:DefinedTerm
    159 Ncda51d3b98544733abd103dc1803ab61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Gene Transfer Techniques
    161 rdf:type schema:DefinedTerm
    162 Ndcff7fb5511c4daf83634bac7a088d4f rdf:first sg:person.0635524645.00
    163 rdf:rest Ne326246598cd46cdab5ad056ba3c10e3
    164 Ne326246598cd46cdab5ad056ba3c10e3 rdf:first sg:person.01043550664.14
    165 rdf:rest rdf:nil
    166 Nff0543961c9b4bf49e64d7cd49a9f3f2 schema:name Springer Nature - SN SciGraph project
    167 rdf:type schema:Organization
    168 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Biological Sciences
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Genetics
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:0608 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Zoology
    176 rdf:type schema:DefinedTerm
    177 sg:journal.1017127 schema:issn 0016-6707
    178 1573-6857
    179 schema:name Genetica
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.01034434475.71 schema:affiliation grid-institutes:grid.7445.2
    183 schema:familyName Nolan
    184 schema:givenName Tony
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034434475.71
    186 rdf:type schema:Person
    187 sg:person.01043550664.14 schema:affiliation grid-institutes:grid.9027.c
    188 schema:familyName Crisanti
    189 schema:givenName Andrea
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043550664.14
    191 rdf:type schema:Person
    192 sg:person.01120566061.08 schema:affiliation grid-institutes:grid.7445.2
    193 schema:familyName Magnusson
    194 schema:givenName Kalle
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120566061.08
    196 rdf:type schema:Person
    197 sg:person.01177726475.65 schema:affiliation grid-institutes:grid.7445.2
    198 schema:familyName Windbichler
    199 schema:givenName Nikolai
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177726475.65
    201 rdf:type schema:Person
    202 sg:person.01265111475.85 schema:affiliation grid-institutes:grid.7445.2
    203 schema:familyName Benton
    204 schema:givenName Jason
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265111475.85
    206 rdf:type schema:Person
    207 sg:person.01314155075.61 schema:affiliation grid-institutes:grid.7445.2
    208 schema:familyName Papathanos
    209 schema:givenName Philippos
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314155075.61
    211 rdf:type schema:Person
    212 sg:person.0635524645.00 schema:affiliation grid-institutes:grid.7445.2
    213 schema:familyName Catteruccia
    214 schema:givenName Flaminia
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635524645.00
    216 rdf:type schema:Person
    217 sg:pub.10.1007/1-4020-4051-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255662
    218 https://doi.org/10.1007/1-4020-4051-2_1
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/1-4020-4051-2_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050142483
    221 https://doi.org/10.1007/1-4020-4051-2_10
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/1-4020-4051-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037404979
    224 https://doi.org/10.1007/1-4020-4051-2_16
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/978-1-4020-6059-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021430455
    227 https://doi.org/10.1007/978-1-4020-6059-5_6
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00438-007-0274-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007162310
    230 https://doi.org/10.1007/s00438-007-0274-5
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1023/a:1020903523907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012043942
    233 https://doi.org/10.1023/a:1020903523907
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1023/a:1020911725724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026832791
    236 https://doi.org/10.1023/a:1020911725724
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/35016096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044128944
    239 https://doi.org/10.1038/35016096
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nbt1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027418777
    242 https://doi.org/10.1038/nbt1002
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047278924
    245 https://doi.org/10.1038/nbt1071
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nbt1152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006635141
    248 https://doi.org/10.1038/nbt1152
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nbt1283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024024955
    251 https://doi.org/10.1038/nbt1283
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nbt769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031016193
    254 https://doi.org/10.1038/nbt769
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/1471-2199-10-65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038230304
    257 https://doi.org/10.1186/1471-2199-10-65
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/1741-7007-7-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040926713
    260 https://doi.org/10.1186/1741-7007-7-4
    261 rdf:type schema:CreativeWork
    262 grid-institutes:grid.7445.2 schema:alternateName Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK
    263 schema:name Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK
    264 rdf:type schema:Organization
    265 grid-institutes:grid.9027.c schema:alternateName Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06122, Perugia, Italy
    266 schema:name Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06122, Perugia, Italy
    267 Faculty of Life Sciences, Imperial College London, SW7 2AZ, London, UK
    268 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...