Managing sensor traffic data and forecasting unusual behaviour propagation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

Claudia Bauzer Medeiros, Marc Joliveau, Geneviève Jomier, Florian De Vuyst

ABSTRACT

Sensor data on traffic events have prompted a wide range of research issues, related with the so-called ITS (Intelligent Transportation Systems). Data are delivered for both static (fixed) and mobile (embedded) sensors, generating large and complex spatio-temporal series. This scenario presents several research challenges, in spatio-temporal data management and data analysis. Management issues involve, for instance, data cleaning and data fusion to support queries at distinct spatial and temporal granularities. Analysis issues include the characterization of traffic behavior for given space and/or time windows, and detection of anomalous behavior (either due to sensor malfunction, or to traffic events). This paper contributes to the solution of some of these issues through a new kind of framework to manage static sensor data. Our work is based on combining research on analytical methods to process sensor data, and data management strategies to query these data. The first aspect is geared towards supporting pattern matching. This leads to a model to study and predict unusual traffic behavior along an urban road network. The second aspect deals with spatio-temporal database issues, taking into account information produced by the model. This allows distinct granularities and modalities of analysis of sensor data in space and time. This work was conducted within a project that uses real data, with tests conducted on 1,000 sensors, during 3 years, in a large French city. More... »

PAGES

279-305

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10707-010-0102-7

DOI

http://dx.doi.org/10.1007/s10707-010-0102-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033917486


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "IC, University of Campinas, UNICAMP, 13081-970, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medeiros", 
        "givenName": "Claudia Bauzer", 
        "id": "sg:person.011537123441.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537123441.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "CIRRELT, Universit\u00e9 de Montr\u00e9al, C.P. 6128, succ. Centre-Ville, H3C 3J7, Montr\u00e9al, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joliveau", 
        "givenName": "Marc", 
        "id": "sg:person.013517607525.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517607525.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Dauphine University", 
          "id": "https://www.grid.ac/institutes/grid.11024.36", 
          "name": [
            "LAMSADE, Universit\u00e9 Paris-Dauphine, Place du Mar\u00e9chal de Lattre de Tassigny, 75 775, Paris Cedex 16, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jomier", 
        "givenName": "Genevi\u00e8ve", 
        "id": "sg:person.016265442601.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016265442601.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Centrale Paris", 
          "id": "https://www.grid.ac/institutes/grid.14001.34", 
          "name": [
            "Laboratoire Math\u00e9matiques Appliqu\u00e9es aux Syst\u00e8mes, Ecole Centrale Paris, Grande Voie des Vignes, 92295, Chatenay-Malabry Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Vuyst", 
        "givenName": "Florian", 
        "id": "sg:person.012614044353.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614044353.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.datak.2007.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001446898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1410043.1410054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003646664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/882082.882086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003687047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-007-0039-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014156917", 
          "https://doi.org/10.1007/s10707-007-0039-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021556751", 
          "https://doi.org/10.1007/pl00011669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/352958.352963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025054234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1463434.1463452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027114665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2008.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028044287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1341012.1341040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028324631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028334489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/347090.347167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035246359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/191839.191925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037554782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11890393_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037899152", 
          "https://doi.org/10.1007/11890393_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11890393_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037899152", 
          "https://doi.org/10.1007/11890393_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039067274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/376284.375680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039316236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11871637_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048894391", 
          "https://doi.org/10.1007/11871637_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11871637_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048894391", 
          "https://doi.org/10.1007/11871637_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-57301-1_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051043966", 
          "https://doi.org/10.1007/3-540-57301-1_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2007.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094432137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1999.754915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094486646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2007.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095045811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sequen.1997.666899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095357373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp:20040002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098694498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "Sensor data on traffic events have prompted a wide range of research issues, related with the so-called ITS (Intelligent Transportation Systems). Data are delivered for both static (fixed) and mobile (embedded) sensors, generating large and complex spatio-temporal series. This scenario presents several research challenges, in spatio-temporal data management and data analysis. Management issues involve, for instance, data cleaning and data fusion to support queries at distinct spatial and temporal granularities. Analysis issues include the characterization of traffic behavior for given space and/or time windows, and detection of anomalous behavior (either due to sensor malfunction, or to traffic events). This paper contributes to the solution of some of these issues through a new kind of framework to manage static sensor data. Our work is based on combining research on analytical methods to process sensor data, and data management strategies to query these data. The first aspect is geared towards supporting pattern matching. This leads to a model to study and predict unusual traffic behavior along an urban road network. The second aspect deals with spatio-temporal database issues, taking into account information produced by the model. This allows distinct granularities and modalities of analysis of sensor data in space and time. This work was conducted within a project that uses real data, with tests conducted on 1,000 sensors, during 3 years, in a large French city.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10707-010-0102-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043850", 
        "issn": [
          "1384-6175", 
          "1573-7624"
        ], 
        "name": "GeoInformatica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Managing sensor traffic data and forecasting unusual behaviour propagation", 
    "pagination": "279-305", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a192c9ee4a378e9c79a57cf02133ea736096b6ac16ea8bddc29772abe307cc15"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10707-010-0102-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033917486"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10707-010-0102-7", 
      "https://app.dimensions.ai/details/publication/pub.1033917486"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10707-010-0102-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10707-010-0102-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10707-010-0102-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10707-010-0102-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10707-010-0102-7'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10707-010-0102-7 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N43158526a693429086cf553ce781784e
4 schema:citation sg:pub.10.1007/11871637_54
5 sg:pub.10.1007/11890393_36
6 sg:pub.10.1007/3-540-57301-1_5
7 sg:pub.10.1007/978-1-4757-1904-8
8 sg:pub.10.1007/pl00011669
9 sg:pub.10.1007/s10707-007-0039-7
10 https://doi.org/10.1016/j.cor.2005.05.024
11 https://doi.org/10.1016/j.datak.2007.10.008
12 https://doi.org/10.1016/j.trb.2008.07.004
13 https://doi.org/10.1049/cp:20040002
14 https://doi.org/10.1109/icde.1999.754915
15 https://doi.org/10.1109/icdmw.2007.28
16 https://doi.org/10.1109/icdmw.2007.76
17 https://doi.org/10.1109/sequen.1997.666899
18 https://doi.org/10.1126/science.290.5500.2319
19 https://doi.org/10.1145/1341012.1341040
20 https://doi.org/10.1145/1410043.1410054
21 https://doi.org/10.1145/1463434.1463452
22 https://doi.org/10.1145/191839.191925
23 https://doi.org/10.1145/347090.347167
24 https://doi.org/10.1145/352958.352963
25 https://doi.org/10.1145/376284.375680
26 https://doi.org/10.1145/882082.882086
27 schema:datePublished 2010-07
28 schema:datePublishedReg 2010-07-01
29 schema:description Sensor data on traffic events have prompted a wide range of research issues, related with the so-called ITS (Intelligent Transportation Systems). Data are delivered for both static (fixed) and mobile (embedded) sensors, generating large and complex spatio-temporal series. This scenario presents several research challenges, in spatio-temporal data management and data analysis. Management issues involve, for instance, data cleaning and data fusion to support queries at distinct spatial and temporal granularities. Analysis issues include the characterization of traffic behavior for given space and/or time windows, and detection of anomalous behavior (either due to sensor malfunction, or to traffic events). This paper contributes to the solution of some of these issues through a new kind of framework to manage static sensor data. Our work is based on combining research on analytical methods to process sensor data, and data management strategies to query these data. The first aspect is geared towards supporting pattern matching. This leads to a model to study and predict unusual traffic behavior along an urban road network. The second aspect deals with spatio-temporal database issues, taking into account information produced by the model. This allows distinct granularities and modalities of analysis of sensor data in space and time. This work was conducted within a project that uses real data, with tests conducted on 1,000 sensors, during 3 years, in a large French city.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N0635014ff47a4023831ef42da82600fa
34 N1be7e73b5fb342518e80fded866acee5
35 sg:journal.1043850
36 schema:name Managing sensor traffic data and forecasting unusual behaviour propagation
37 schema:pagination 279-305
38 schema:productId N064c5b8bdb654f1d84e7422d30155c7a
39 N22507f1c14354d87a463a60a9726c4bb
40 Ncd2b8d4965a24a539d59600c2a71d237
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033917486
42 https://doi.org/10.1007/s10707-010-0102-7
43 schema:sdDatePublished 2019-04-11T10:03
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N91fbbaa8f11e4e38a722f86bdcf87159
46 schema:url http://link.springer.com/10.1007%2Fs10707-010-0102-7
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0635014ff47a4023831ef42da82600fa schema:volumeNumber 14
51 rdf:type schema:PublicationVolume
52 N064c5b8bdb654f1d84e7422d30155c7a schema:name doi
53 schema:value 10.1007/s10707-010-0102-7
54 rdf:type schema:PropertyValue
55 N1be7e73b5fb342518e80fded866acee5 schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 N22507f1c14354d87a463a60a9726c4bb schema:name readcube_id
58 schema:value a192c9ee4a378e9c79a57cf02133ea736096b6ac16ea8bddc29772abe307cc15
59 rdf:type schema:PropertyValue
60 N43158526a693429086cf553ce781784e rdf:first sg:person.011537123441.73
61 rdf:rest Ne2eab408f58c4f3280f7f68920e19b74
62 N8e99b100b3e04cf7adb18dbdb7d87c3f rdf:first sg:person.016265442601.77
63 rdf:rest Nf51bdb66a4be43cea2ebb18007c83d28
64 N91fbbaa8f11e4e38a722f86bdcf87159 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Ncd2b8d4965a24a539d59600c2a71d237 schema:name dimensions_id
67 schema:value pub.1033917486
68 rdf:type schema:PropertyValue
69 Ne2eab408f58c4f3280f7f68920e19b74 rdf:first sg:person.013517607525.19
70 rdf:rest N8e99b100b3e04cf7adb18dbdb7d87c3f
71 Nf51bdb66a4be43cea2ebb18007c83d28 rdf:first sg:person.012614044353.17
72 rdf:rest rdf:nil
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information Systems
78 rdf:type schema:DefinedTerm
79 sg:journal.1043850 schema:issn 1384-6175
80 1573-7624
81 schema:name GeoInformatica
82 rdf:type schema:Periodical
83 sg:person.011537123441.73 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
84 schema:familyName Medeiros
85 schema:givenName Claudia Bauzer
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537123441.73
87 rdf:type schema:Person
88 sg:person.012614044353.17 schema:affiliation https://www.grid.ac/institutes/grid.14001.34
89 schema:familyName De Vuyst
90 schema:givenName Florian
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614044353.17
92 rdf:type schema:Person
93 sg:person.013517607525.19 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
94 schema:familyName Joliveau
95 schema:givenName Marc
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517607525.19
97 rdf:type schema:Person
98 sg:person.016265442601.77 schema:affiliation https://www.grid.ac/institutes/grid.11024.36
99 schema:familyName Jomier
100 schema:givenName Geneviève
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016265442601.77
102 rdf:type schema:Person
103 sg:pub.10.1007/11871637_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048894391
104 https://doi.org/10.1007/11871637_54
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/11890393_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037899152
107 https://doi.org/10.1007/11890393_36
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/3-540-57301-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051043966
110 https://doi.org/10.1007/3-540-57301-1_5
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-1-4757-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639131
113 https://doi.org/10.1007/978-1-4757-1904-8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/pl00011669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021556751
116 https://doi.org/10.1007/pl00011669
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10707-007-0039-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014156917
119 https://doi.org/10.1007/s10707-007-0039-7
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.cor.2005.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039067274
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.datak.2007.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001446898
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.trb.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044287
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/cp:20040002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098694498
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/icde.1999.754915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094486646
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icdmw.2007.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094432137
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/icdmw.2007.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095045811
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/sequen.1997.666899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095357373
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.290.5500.2319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028334489
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/1341012.1341040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028324631
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/1410043.1410054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003646664
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/1463434.1463452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027114665
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/191839.191925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037554782
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/347090.347167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035246359
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/352958.352963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025054234
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/376284.375680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039316236
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1145/882082.882086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003687047
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.11024.36 schema:alternateName Paris Dauphine University
156 schema:name LAMSADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75 775, Paris Cedex 16, France
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.14001.34 schema:alternateName École Centrale Paris
159 schema:name Laboratoire Mathématiques Appliquées aux Systèmes, Ecole Centrale Paris, Grande Voie des Vignes, 92295, Chatenay-Malabry Cedex, France
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.14848.31 schema:alternateName University of Montreal
162 schema:name CIRRELT, Université de Montréal, C.P. 6128, succ. Centre-Ville, H3C 3J7, Montréal, Quebec, Canada
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
165 schema:name IC, University of Campinas, UNICAMP, 13081-970, Campinas, SP, Brazil
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...