Pressuremeter Modulus and Limit Pressure of Clayey Soils Using GMDH-Type Neural Network and Genetic Algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Reza Ziaie Moayed, Afshin Kordnaeij, Hossein Mola-Abasi

ABSTRACT

Pressuremeter modulus (EM) and limit pressure (PL) are used for the calculation of the settlement and bearing capacity of foundation respectively. As the determination of these parameters from pressuremeter test (PMT) is relatively time-consuming and expensive, various empirical correlations have been proposed to correlate the EM and PL to other soil parameters. For the existing equations are incapable of estimating these PMT parameters well, in present research group method of data handling type neural network is used to estimate the EM and PL of clayey soils. The EM and PL were modeled as a function of three variables including the moisture content (ω), plasticity index and corrected SPT blow counts (N60). A database containing 51 data sets have been used for training and testing of the models. The performances of proposed models are compared with those of existing empirical equations. The results demonstrate that appreciable improvement with respect to the other correlations has been achieved. At the end, sensitivity analysis of the obtained models has been performed to study the influence of input parameters on model outputs and shows that the N60 is the most influential parameter on the PMT parameters. More... »

PAGES

165-178

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10706-017-0314-9

DOI

http://dx.doi.org/10.1007/s10706-017-0314-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091054625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imam Khomeini International University", 
          "id": "https://www.grid.ac/institutes/grid.411537.5", 
          "name": [
            "Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziaie Moayed", 
        "givenName": "Reza", 
        "id": "sg:person.016337562425.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337562425.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imam Khomeini International University", 
          "id": "https://www.grid.ac/institutes/grid.411537.5", 
          "name": [
            "Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kordnaeij", 
        "givenName": "Afshin", 
        "id": "sg:person.012576751412.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576751412.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Civil Engineering, Gonbadekavous university, Gonbadekavous, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mola-Abasi", 
        "givenName": "Hossein", 
        "id": "sg:person.011470773747.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470773747.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10706-015-9899-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000089795", 
          "https://doi.org/10.1007/s10706-015-9899-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-013-9643-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000996704", 
          "https://doi.org/10.1007/s10706-013-9643-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0153-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005380116", 
          "https://doi.org/10.1007/s10064-008-0153-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0153-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005380116", 
          "https://doi.org/10.1007/s10064-008-0153-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2014.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005383256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2008.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005835178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-011-1439-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008727953", 
          "https://doi.org/10.1007/s12665-011-1439-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2013.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008951433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-009-0248-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010611452", 
          "https://doi.org/10.1007/s10064-009-0248-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-009-0248-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010611452", 
          "https://doi.org/10.1007/s10064-009-0248-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-009-0248-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010611452", 
          "https://doi.org/10.1007/s10064-009-0248-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-010-0839-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011395582", 
          "https://doi.org/10.1007/s12665-010-0839-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-016-0004-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015291483", 
          "https://doi.org/10.1007/s10706-016-0004-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2012.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018308244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-013-9710-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022584781", 
          "https://doi.org/10.1007/s10706-013-9710-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2008.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024121428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17499518.2013.845720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027808044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17486025.2014.933894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029828435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2390-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031280796", 
          "https://doi.org/10.1007/s00521-016-2390-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2390-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031280796", 
          "https://doi.org/10.1007/s00521-016-2390-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2016-16108-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033270626", 
          "https://doi.org/10.1140/epjp/i2016-16108-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-010-9379-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033591647", 
          "https://doi.org/10.1007/s10706-010-9379-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sandf.2015.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036554254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-013-9720-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038884418", 
          "https://doi.org/10.1007/s10706-013-9720-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-012-9520-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048123438", 
          "https://doi.org/10.1007/s10706-012-9520-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-398296-4.00010-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049018584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-016-9976-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049280553", 
          "https://doi.org/10.1007/s10706-016-9976-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2014.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049715552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-012-0525-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050129450", 
          "https://doi.org/10.1007/s13369-012-0525-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)cp.1943-5487.0000050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057627370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)gm.1943-5622.0000129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057631261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)he.1943-5584.0001085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057634663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1971.4308320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3997/1873-0604.2015010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071814175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3997/1873-0604.2015010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071814175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5897/sre12.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073489572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19648189.2017.1304269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084169471"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "Pressuremeter modulus (EM) and limit pressure (PL) are used for the calculation of the settlement and bearing capacity of foundation respectively. As the determination of these parameters from pressuremeter test (PMT) is relatively time-consuming and expensive, various empirical correlations have been proposed to correlate the EM and PL to other soil parameters. For the existing equations are incapable of estimating these PMT parameters well, in present research group method of data handling type neural network is used to estimate the EM and PL of clayey soils. The EM and PL were modeled as a function of three variables including the moisture content (\u03c9), plasticity index and corrected SPT blow counts (N60). A database containing 51 data sets have been used for training and testing of the models. The performances of proposed models are compared with those of existing empirical equations. The results demonstrate that appreciable improvement with respect to the other correlations has been achieved. At the end, sensitivity analysis of the obtained models has been performed to study the influence of input parameters on model outputs and shows that the N60 is the most influential parameter on the PMT parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10706-017-0314-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136344", 
        "issn": [
          "0960-3182", 
          "1573-1529"
        ], 
        "name": "Geotechnical and Geological Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Pressuremeter Modulus and Limit Pressure of Clayey Soils Using GMDH-Type Neural Network and Genetic Algorithms", 
    "pagination": "165-178", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "72bb064584accc763d14628f4fa42bc079d8e078455a0af2a476d3f75429c90f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10706-017-0314-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091054625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10706-017-0314-9", 
      "https://app.dimensions.ai/details/publication/pub.1091054625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10706-017-0314-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10706-017-0314-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10706-017-0314-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10706-017-0314-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10706-017-0314-9'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10706-017-0314-9 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N63a1d2dd94dd4427b1201d93646b4621
4 schema:citation sg:pub.10.1007/s00521-016-2390-9
5 sg:pub.10.1007/s10064-008-0153-2
6 sg:pub.10.1007/s10064-009-0248-4
7 sg:pub.10.1007/s10706-010-9379-4
8 sg:pub.10.1007/s10706-012-9520-7
9 sg:pub.10.1007/s10706-013-9643-5
10 sg:pub.10.1007/s10706-013-9710-y
11 sg:pub.10.1007/s10706-013-9720-9
12 sg:pub.10.1007/s10706-015-9899-z
13 sg:pub.10.1007/s10706-016-0004-z
14 sg:pub.10.1007/s10706-016-9976-y
15 sg:pub.10.1007/s12665-010-0839-1
16 sg:pub.10.1007/s12665-011-1439-4
17 sg:pub.10.1007/s13369-012-0525-6
18 sg:pub.10.1140/epjp/i2016-16108-5
19 https://doi.org/10.1016/b978-0-12-398296-4.00010-6
20 https://doi.org/10.1016/j.compgeo.2008.09.003
21 https://doi.org/10.1016/j.engappai.2014.03.012
22 https://doi.org/10.1016/j.enggeo.2008.09.006
23 https://doi.org/10.1016/j.ijrmms.2013.11.004
24 https://doi.org/10.1016/j.measurement.2014.08.007
25 https://doi.org/10.1016/j.oceaneng.2012.12.006
26 https://doi.org/10.1016/j.sandf.2015.10.001
27 https://doi.org/10.1061/(asce)cp.1943-5487.0000050
28 https://doi.org/10.1061/(asce)gm.1943-5622.0000129
29 https://doi.org/10.1061/(asce)he.1943-5584.0001085
30 https://doi.org/10.1080/17486025.2014.933894
31 https://doi.org/10.1080/17499518.2013.845720
32 https://doi.org/10.1080/19648189.2017.1304269
33 https://doi.org/10.1109/tsmc.1971.4308320
34 https://doi.org/10.3997/1873-0604.2015010
35 https://doi.org/10.5897/sre12.297
36 schema:datePublished 2018-02
37 schema:datePublishedReg 2018-02-01
38 schema:description Pressuremeter modulus (EM) and limit pressure (PL) are used for the calculation of the settlement and bearing capacity of foundation respectively. As the determination of these parameters from pressuremeter test (PMT) is relatively time-consuming and expensive, various empirical correlations have been proposed to correlate the EM and PL to other soil parameters. For the existing equations are incapable of estimating these PMT parameters well, in present research group method of data handling type neural network is used to estimate the EM and PL of clayey soils. The EM and PL were modeled as a function of three variables including the moisture content (ω), plasticity index and corrected SPT blow counts (N60). A database containing 51 data sets have been used for training and testing of the models. The performances of proposed models are compared with those of existing empirical equations. The results demonstrate that appreciable improvement with respect to the other correlations has been achieved. At the end, sensitivity analysis of the obtained models has been performed to study the influence of input parameters on model outputs and shows that the N60 is the most influential parameter on the PMT parameters.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N6c71720ce49b4275a279b958b4369364
43 Nba5436256e654f609ae537e02f0a1321
44 sg:journal.1136344
45 schema:name Pressuremeter Modulus and Limit Pressure of Clayey Soils Using GMDH-Type Neural Network and Genetic Algorithms
46 schema:pagination 165-178
47 schema:productId N656ccf9e97ff43f1a9cba5f2de9a56e1
48 Na6c8e169df5c444b9a757d34e4679921
49 Nf707bdcf187947a68200ec232aaeb933
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091054625
51 https://doi.org/10.1007/s10706-017-0314-9
52 schema:sdDatePublished 2019-04-11T09:39
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nd0f368387abc43dda5f4fcab9208e9b6
55 schema:url https://link.springer.com/10.1007%2Fs10706-017-0314-9
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0aae8bb4045a4ce49c84f8a8ba561ffa schema:name Department of Civil Engineering, Gonbadekavous university, Gonbadekavous, Iran
60 rdf:type schema:Organization
61 N2f65c1d9dc974d32901286b5f202190d rdf:first sg:person.012576751412.18
62 rdf:rest N54d5e4afc37d4787afe5f089c283b35a
63 N54d5e4afc37d4787afe5f089c283b35a rdf:first sg:person.011470773747.00
64 rdf:rest rdf:nil
65 N63a1d2dd94dd4427b1201d93646b4621 rdf:first sg:person.016337562425.09
66 rdf:rest N2f65c1d9dc974d32901286b5f202190d
67 N656ccf9e97ff43f1a9cba5f2de9a56e1 schema:name dimensions_id
68 schema:value pub.1091054625
69 rdf:type schema:PropertyValue
70 N6c71720ce49b4275a279b958b4369364 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 Na6c8e169df5c444b9a757d34e4679921 schema:name readcube_id
73 schema:value 72bb064584accc763d14628f4fa42bc079d8e078455a0af2a476d3f75429c90f
74 rdf:type schema:PropertyValue
75 Nba5436256e654f609ae537e02f0a1321 schema:volumeNumber 36
76 rdf:type schema:PublicationVolume
77 Nd0f368387abc43dda5f4fcab9208e9b6 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nf707bdcf187947a68200ec232aaeb933 schema:name doi
80 schema:value 10.1007/s10706-017-0314-9
81 rdf:type schema:PropertyValue
82 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
83 schema:name Economics
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
86 schema:name Econometrics
87 rdf:type schema:DefinedTerm
88 sg:journal.1136344 schema:issn 0960-3182
89 1573-1529
90 schema:name Geotechnical and Geological Engineering
91 rdf:type schema:Periodical
92 sg:person.011470773747.00 schema:affiliation N0aae8bb4045a4ce49c84f8a8ba561ffa
93 schema:familyName Mola-Abasi
94 schema:givenName Hossein
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470773747.00
96 rdf:type schema:Person
97 sg:person.012576751412.18 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
98 schema:familyName Kordnaeij
99 schema:givenName Afshin
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576751412.18
101 rdf:type schema:Person
102 sg:person.016337562425.09 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
103 schema:familyName Ziaie Moayed
104 schema:givenName Reza
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337562425.09
106 rdf:type schema:Person
107 sg:pub.10.1007/s00521-016-2390-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031280796
108 https://doi.org/10.1007/s00521-016-2390-9
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10064-008-0153-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005380116
111 https://doi.org/10.1007/s10064-008-0153-2
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10064-009-0248-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611452
114 https://doi.org/10.1007/s10064-009-0248-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10706-010-9379-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033591647
117 https://doi.org/10.1007/s10706-010-9379-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10706-012-9520-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048123438
120 https://doi.org/10.1007/s10706-012-9520-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10706-013-9643-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000996704
123 https://doi.org/10.1007/s10706-013-9643-5
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10706-013-9710-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022584781
126 https://doi.org/10.1007/s10706-013-9710-y
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10706-013-9720-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038884418
129 https://doi.org/10.1007/s10706-013-9720-9
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10706-015-9899-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000089795
132 https://doi.org/10.1007/s10706-015-9899-z
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10706-016-0004-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015291483
135 https://doi.org/10.1007/s10706-016-0004-z
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10706-016-9976-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049280553
138 https://doi.org/10.1007/s10706-016-9976-y
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s12665-010-0839-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011395582
141 https://doi.org/10.1007/s12665-010-0839-1
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s12665-011-1439-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008727953
144 https://doi.org/10.1007/s12665-011-1439-4
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s13369-012-0525-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050129450
147 https://doi.org/10.1007/s13369-012-0525-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1140/epjp/i2016-16108-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033270626
150 https://doi.org/10.1140/epjp/i2016-16108-5
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/b978-0-12-398296-4.00010-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049018584
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.compgeo.2008.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005835178
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.engappai.2014.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005383256
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.enggeo.2008.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024121428
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ijrmms.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008951433
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.measurement.2014.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049715552
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.oceaneng.2012.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018308244
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.sandf.2015.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036554254
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1061/(asce)cp.1943-5487.0000050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057627370
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1061/(asce)gm.1943-5622.0000129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057631261
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1061/(asce)he.1943-5584.0001085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057634663
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1080/17486025.2014.933894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029828435
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/17499518.2013.845720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027808044
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/19648189.2017.1304269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084169471
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tsmc.1971.4308320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792566
181 rdf:type schema:CreativeWork
182 https://doi.org/10.3997/1873-0604.2015010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071814175
183 rdf:type schema:CreativeWork
184 https://doi.org/10.5897/sre12.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073489572
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.411537.5 schema:alternateName Imam Khomeini International University
187 schema:name Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...