Artificial Neural Network Prediction Models for Soil Compaction and Permeability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

Sunil K. Sinha, Mian C. Wang

ABSTRACT

This paper presents Artificial Neural Network (ANN) prediction models which relate permeability, maximum dry density (MDD) and optimum moisture content with classification properties of the soils. The ANN prediction models were developed from the results of classification, compaction and permeability tests, and statistical analyses. The test soils were prepared from four soil components, namely, bentonite, limestone dust, sand and gravel. These four components were blended in different proportions to form 55 different mixes. The standard Proctor compaction tests were adopted, and both the falling and constant head test methods were used in the permeability tests. The permeability, MDD and optimum moisture content (OMC) data were trained with the soil’s classification properties by using an available ANN software package. Three sets of ANN prediction models are developed, one each for the MDD, OMC and permeability (PMC). A combined ANN model is also developed to predict the values of MDD, OMC, and PMC. A comparison with the test data indicates that predictions within 95% confidence interval can be obtained from the ANN models developed. Practical applications of these prediction models and the necessary precautions for using these models are discussed in detail in this paper. More... »

PAGES

47-64

References to SciGraph publications

  • 1930. Das Verhalten des Bodens zum Wasser in DIE PHYSIKALISCHE BESCHAFFENHEIT DES BODENS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10706-007-9146-3

    DOI

    http://dx.doi.org/10.1007/s10706-007-9146-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019845262


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Pennsylvania State University", 
              "id": "https://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Civil & Environmental Engineering, Pennsylvania State University, 16802, University Park, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sinha", 
            "givenName": "Sunil K.", 
            "id": "sg:person.014160363277.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160363277.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennsylvania State University", 
              "id": "https://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Civil & Environmental Engineering, Pennsylvania State University, 16802, University Park, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Mian C.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0893-6080(09)80018-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006482040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02172-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023280415", 
              "https://doi.org/10.1007/978-3-662-02172-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(05)80067-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026910812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie50534a041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055634522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9372(1984)110:6(1063)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057576858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)1090-0241(1998)124:9(907)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057617972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/massp.1987.1165576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061385413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.13031/2013.35369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064900942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj1979.03615995004300040028x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069042996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icnn.1993.298625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086335545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1520/stp46161s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088489963"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-02", 
        "datePublishedReg": "2008-02-01", 
        "description": "This paper presents Artificial Neural Network (ANN) prediction models which relate permeability, maximum dry density (MDD) and optimum moisture content with classification properties of the soils. The ANN prediction models were developed from the results of classification, compaction and permeability tests, and statistical analyses. The test soils were prepared from four soil components, namely, bentonite, limestone dust, sand and gravel. These four components were blended in different proportions to form 55 different mixes. The standard Proctor compaction tests were adopted, and both the falling and constant head test methods were used in the permeability tests. The permeability, MDD and optimum moisture content (OMC) data were trained with the soil\u2019s classification properties by using an available ANN software package. Three sets of ANN prediction models are developed, one each for the MDD, OMC and permeability (PMC). A combined ANN model is also developed to predict the values of MDD, OMC, and PMC. A comparison with the test data indicates that predictions within 95% confidence interval can be obtained from the ANN models developed. Practical applications of these prediction models and the necessary precautions for using these models are discussed in detail in this paper.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10706-007-9146-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136344", 
            "issn": [
              "0960-3182", 
              "1573-1529"
            ], 
            "name": "Geotechnical and Geological Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Artificial Neural Network Prediction Models for Soil Compaction and Permeability", 
        "pagination": "47-64", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10706-007-9146-3"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5e8db093c5d1aa8091d154a49ed831e2e546ef0870bea91901c1240f004a5de0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019845262"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10706-007-9146-3", 
          "https://app.dimensions.ai/details/publication/pub.1019845262"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56167_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10706-007-9146-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10706-007-9146-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10706-007-9146-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10706-007-9146-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10706-007-9146-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10706-007-9146-3 schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author N0dd264a7e27e4bc9ba5f26bbf645fba5
    4 schema:citation sg:pub.10.1007/978-3-662-02172-9_2
    5 https://doi.org/10.1016/s0893-6080(05)80067-x
    6 https://doi.org/10.1016/s0893-6080(09)80018-x
    7 https://doi.org/10.1021/ie50534a041
    8 https://doi.org/10.1061/(asce)0733-9372(1984)110:6(1063)
    9 https://doi.org/10.1061/(asce)1090-0241(1998)124:9(907)
    10 https://doi.org/10.1109/icnn.1993.298625
    11 https://doi.org/10.1109/massp.1987.1165576
    12 https://doi.org/10.13031/2013.35369
    13 https://doi.org/10.1520/stp46161s
    14 https://doi.org/10.2136/sssaj1979.03615995004300040028x
    15 schema:datePublished 2008-02
    16 schema:datePublishedReg 2008-02-01
    17 schema:description This paper presents Artificial Neural Network (ANN) prediction models which relate permeability, maximum dry density (MDD) and optimum moisture content with classification properties of the soils. The ANN prediction models were developed from the results of classification, compaction and permeability tests, and statistical analyses. The test soils were prepared from four soil components, namely, bentonite, limestone dust, sand and gravel. These four components were blended in different proportions to form 55 different mixes. The standard Proctor compaction tests were adopted, and both the falling and constant head test methods were used in the permeability tests. The permeability, MDD and optimum moisture content (OMC) data were trained with the soil’s classification properties by using an available ANN software package. Three sets of ANN prediction models are developed, one each for the MDD, OMC and permeability (PMC). A combined ANN model is also developed to predict the values of MDD, OMC, and PMC. A comparison with the test data indicates that predictions within 95% confidence interval can be obtained from the ANN models developed. Practical applications of these prediction models and the necessary precautions for using these models are discussed in detail in this paper.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N529fef6cced146389fce41769b2df382
    22 Nf08acdf3f1944ad18da5f370feba734e
    23 sg:journal.1136344
    24 schema:name Artificial Neural Network Prediction Models for Soil Compaction and Permeability
    25 schema:pagination 47-64
    26 schema:productId N05524a951b104132a18f306f79f62194
    27 N3892450a3aa64afc8013e5cb111e4207
    28 Nb0b5eef84d5e4677ad2763b7885a656c
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019845262
    30 https://doi.org/10.1007/s10706-007-9146-3
    31 schema:sdDatePublished 2019-04-15T09:14
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N55d46ae388f14eb7b7e8963586d47d66
    34 schema:url http://link.springer.com/10.1007/s10706-007-9146-3
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N05524a951b104132a18f306f79f62194 schema:name doi
    39 schema:value 10.1007/s10706-007-9146-3
    40 rdf:type schema:PropertyValue
    41 N0dd264a7e27e4bc9ba5f26bbf645fba5 rdf:first sg:person.014160363277.30
    42 rdf:rest Nc72b8dffd74a460284c0172bb96ec194
    43 N3892450a3aa64afc8013e5cb111e4207 schema:name dimensions_id
    44 schema:value pub.1019845262
    45 rdf:type schema:PropertyValue
    46 N529fef6cced146389fce41769b2df382 schema:issueNumber 1
    47 rdf:type schema:PublicationIssue
    48 N55d46ae388f14eb7b7e8963586d47d66 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nb0b5eef84d5e4677ad2763b7885a656c schema:name readcube_id
    51 schema:value 5e8db093c5d1aa8091d154a49ed831e2e546ef0870bea91901c1240f004a5de0
    52 rdf:type schema:PropertyValue
    53 Nb101e5204425473d84ca2f5ab00a7096 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
    54 schema:familyName Wang
    55 schema:givenName Mian C.
    56 rdf:type schema:Person
    57 Nc72b8dffd74a460284c0172bb96ec194 rdf:first Nb101e5204425473d84ca2f5ab00a7096
    58 rdf:rest rdf:nil
    59 Nf08acdf3f1944ad18da5f370feba734e schema:volumeNumber 26
    60 rdf:type schema:PublicationVolume
    61 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Environmental Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Soil Sciences
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1136344 schema:issn 0960-3182
    68 1573-1529
    69 schema:name Geotechnical and Geological Engineering
    70 rdf:type schema:Periodical
    71 sg:person.014160363277.30 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
    72 schema:familyName Sinha
    73 schema:givenName Sunil K.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160363277.30
    75 rdf:type schema:Person
    76 sg:pub.10.1007/978-3-662-02172-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023280415
    77 https://doi.org/10.1007/978-3-662-02172-9_2
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/s0893-6080(05)80067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026910812
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/s0893-6080(09)80018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006482040
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1021/ie50534a041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055634522
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1061/(asce)0733-9372(1984)110:6(1063) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057576858
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1061/(asce)1090-0241(1998)124:9(907) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057617972
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1109/icnn.1993.298625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086335545
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1109/massp.1987.1165576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385413
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.13031/2013.35369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064900942
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1520/stp46161s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088489963
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.2136/sssaj1979.03615995004300040028x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069042996
    98 rdf:type schema:CreativeWork
    99 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
    100 schema:name Department of Civil & Environmental Engineering, Pennsylvania State University, 16802, University Park, PA, USA
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...