DSSAT-CERES-Wheat model to optimize plant density and nitrogen best management practices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-23

AUTHORS

Di Zhang, Hongguang Wang, Dongxiao Li, Haoran Li, Hui Ju, Ruiqi Li, William D. Batchelor, Yanming Li

ABSTRACT

Intensive use of groundwater and chemical fertilizer has led to serious negative impacts on environmental conditions in the North China Plain. The main objective of this study was to evaluate the best management production strategies for winter wheat that increase yield and reduce environmental impacts. This study combined field data with model analysis using the CERES-Wheat model to evaluate long-term winter wheat productivity and nitrogen use in response to plant density and nitrogen rate under limiting irrigation conditions. The CERES-Wheat model was calibrated and evaluated with 3 years of data which consisted of plant density, nitrogen rates and irrigation treatments. The simulated results using historical weather data showed that grain yield and nitrogen use were sensitive to different management practices including plant density, nitrogen rate and amount of irrigation applications. Nitrogen application of 180 kg ha−1 with 300 plants m−2 improved long-term nitrogen use, stabilized grain yield, produced the highest net return, and decreased soil residual nitrogen to reduce environment risk. There was a positive correlation between canopy nitrogen and grain yield. Compared with current nitrogen recommendations (240 kg ha−1), N rate of 180 kg ha−1 increased partial factor productivity and agronomic efficiency by about 32% and 33% due to increase in nitrogen uptake efficiency and reduced soil residual nitrogen. In conclusion, results of this study indicated that the CERES-Wheat model was a useful tool to evaluate alternative management practices in order to optimize yield and nitrogen use under limited irrigation conditions. More... »

PAGES

1-14

References to SciGraph publications

  • 2008-10. Evaluation of current and model-based site-specific nitrogen applications on wheat (Triticum aestivum L.) yield and environmental quality in PRECISION AGRICULTURE
  • 2008-11. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat in IRRIGATION SCIENCE
  • 2007-10. Minimizing nitrogen losses from a corn–soybean–winter wheat rotation with best management practices in NUTRIENT CYCLING IN AGROECOSYSTEMS
  • 2002-07. Nitrogen fertilizer use in China – Contributions to food production, impacts on the environment and best management strategies in NUTRIENT CYCLING IN AGROECOSYSTEMS
  • 2010-12. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland in PLANT AND SOIL
  • 2016-01. Nitrate nitrogen accumulation and leaching pattern at a winter wheat: summer maize cropping field in the North China Plain in ENVIRONMENTAL EARTH SCIENCES
  • 2006-06. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain in PLANT AND SOIL
  • 2014-11. Increased plant density of winter wheat can enhance nitrogen–uptake from deep soil in PLANT AND SOIL
  • 2008-10. How a century of ammonia synthesis changed the world in NATURE GEOSCIENCE
  • 2014-01. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems in PLANT AND SOIL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10705-019-09984-1

    DOI

    http://dx.doi.org/10.1007/s10705-019-09984-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112965549


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Auburn University", 
              "id": "https://www.grid.ac/institutes/grid.252546.2", 
              "name": [
                "College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China", 
                "Yangling Vocational & Technical College, 712100, Yangling, Shaanxi, China", 
                "Biosystems Engineering Department, Auburn University, 36830, Auburn, AL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Di", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Hongguang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Dongxiao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Haoran", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Environment and Sustainable Development in Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.464354.4", 
              "name": [
                "Biosystems Engineering Department, Auburn University, 36830, Auburn, AL, USA", 
                "Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, 100081, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ju", 
            "givenName": "Hui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Ruiqi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Auburn University", 
              "id": "https://www.grid.ac/institutes/grid.252546.2", 
              "name": [
                "Biosystems Engineering Department, Auburn University, 36830, Auburn, AL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Batchelor", 
            "givenName": "William D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yanming", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00101-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000616602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00101-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000616602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00107-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001614809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00107-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001614809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2016.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009911490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00271-008-0131-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014895228", 
              "https://doi.org/10.1007/s00271-008-0131-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00271-008-0131-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014895228", 
              "https://doi.org/10.1007/s00271-008-0131-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2015.10.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016613231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2005.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016851423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021107026067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017285472", 
              "https://doi.org/10.1023/a:1021107026067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10705-007-9103-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018692711", 
              "https://doi.org/10.1007/s10705-007-9103-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10705-007-9103-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018692711", 
              "https://doi.org/10.1007/s10705-007-9103-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0153695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020924419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-014-2190-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022359033", 
              "https://doi.org/10.1007/s11104-014-2190-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2011.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023341315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4290(02)00083-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023605546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agsy.2016.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024656719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2011.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-2113(05)88004-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030556363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-2113(05)88004-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030556363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7348.2007.00195.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030695819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2008jcli2605.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032232313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erp116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032709754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erq297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033537871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2005.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035135211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-013-1876-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035469546", 
              "https://doi.org/10.1007/s11104-013-1876-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036209430", 
              "https://doi.org/10.1038/ngeo325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-015-4867-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036721813", 
              "https://doi.org/10.1007/s12665-015-4867-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2006.12.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038780336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-010-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042126467", 
              "https://doi.org/10.1007/s11104-010-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-010-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042126467", 
              "https://doi.org/10.1007/s11104-010-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-010-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042126467", 
              "https://doi.org/10.1007/s11104-010-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4290(03)00068-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043273046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4290(03)00068-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043273046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2010.05.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044320202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2015.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044649421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2013.12.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045500142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eja.2015.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047163424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4290(91)90040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048724755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4290(91)90040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048724755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2014.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049162306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geoderma.2015.11.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049585806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agee.2015.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050053508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1002-0160(15)60030-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050837720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2003.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050907800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agee.2014.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051294854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2012.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051591743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-006-0055-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051658523", 
              "https://doi.org/10.1007/s11104-006-0055-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eja.2007.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051710691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11119-008-9068-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052194330", 
              "https://doi.org/10.1007/s11119-008-9068-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2013.07.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053081976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eja.2010.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053744419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0014479715000113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054081795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2004.1258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068995177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2015.0610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068997276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/jeq2007.0601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069009786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2003.2100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069028209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079089000", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2017.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084074328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2002.8270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106935965"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-23", 
        "datePublishedReg": "2019-03-23", 
        "description": "Intensive use of groundwater and chemical fertilizer has led to serious negative impacts on environmental conditions in the North China Plain. The main objective of this study was to evaluate the best management production strategies for winter wheat that increase yield and reduce environmental impacts. This study combined field data with model analysis using the CERES-Wheat model to evaluate long-term winter wheat productivity and nitrogen use in response to plant density and nitrogen rate under limiting irrigation conditions. The CERES-Wheat model was calibrated and evaluated with 3 years of data which consisted of plant density, nitrogen rates and irrigation treatments. The simulated results using historical weather data showed that grain yield and nitrogen use were sensitive to different management practices including plant density, nitrogen rate and amount of irrigation applications. Nitrogen application of 180 kg ha\u22121 with 300 plants m\u22122 improved long-term nitrogen use, stabilized grain yield, produced the highest net return, and decreased soil residual nitrogen to reduce environment risk. There was a positive correlation between canopy nitrogen and grain yield. Compared with current nitrogen recommendations (240 kg ha\u22121), N rate of 180 kg ha\u22121 increased partial factor productivity and agronomic efficiency by about 32% and 33% due to increase in nitrogen uptake efficiency and reduced soil residual nitrogen. In conclusion, results of this study indicated that the CERES-Wheat model was a useful tool to evaluate alternative management practices in order to optimize yield and nitrogen use under limited irrigation conditions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10705-019-09984-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136667", 
            "issn": [
              "1385-1314", 
              "1573-0867"
            ], 
            "name": "Nutrient Cycling in Agroecosystems", 
            "type": "Periodical"
          }
        ], 
        "name": "DSSAT-CERES-Wheat model to optimize plant density and nitrogen best management practices", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8f06e40a675c35e13c0d7e1f4ab5301fdd18f8719b67f1488ae57dab77b2d0db"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10705-019-09984-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112965549"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10705-019-09984-1", 
          "https://app.dimensions.ai/details/publication/pub.1112965549"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71710_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10705-019-09984-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10705-019-09984-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10705-019-09984-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10705-019-09984-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10705-019-09984-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      75 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10705-019-09984-1 schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 schema:author Nb98683a74a8a49e2a3029b1aa0b12f0c
    4 schema:citation sg:pub.10.1007/s00271-008-0131-2
    5 sg:pub.10.1007/s10705-007-9103-9
    6 sg:pub.10.1007/s11104-006-0055-7
    7 sg:pub.10.1007/s11104-010-0530-z
    8 sg:pub.10.1007/s11104-013-1876-9
    9 sg:pub.10.1007/s11104-014-2190-x
    10 sg:pub.10.1007/s11119-008-9068-y
    11 sg:pub.10.1007/s12665-015-4867-8
    12 sg:pub.10.1023/a:1021107026067
    13 sg:pub.10.1038/ngeo325
    14 https://app.dimensions.ai/details/publication/pub.1079089000
    15 https://doi.org/10.1016/0378-4290(91)90040-3
    16 https://doi.org/10.1016/j.agee.2014.06.001
    17 https://doi.org/10.1016/j.agee.2015.05.005
    18 https://doi.org/10.1016/j.agsy.2016.03.012
    19 https://doi.org/10.1016/j.agwat.2005.01.006
    20 https://doi.org/10.1016/j.agwat.2005.07.020
    21 https://doi.org/10.1016/j.agwat.2006.12.012
    22 https://doi.org/10.1016/j.agwat.2010.05.025
    23 https://doi.org/10.1016/j.agwat.2012.02.007
    24 https://doi.org/10.1016/j.agwat.2014.10.019
    25 https://doi.org/10.1016/j.agwat.2016.06.014
    26 https://doi.org/10.1016/j.eja.2007.06.002
    27 https://doi.org/10.1016/j.eja.2010.07.001
    28 https://doi.org/10.1016/j.eja.2015.04.003
    29 https://doi.org/10.1016/j.fcr.2003.11.007
    30 https://doi.org/10.1016/j.fcr.2011.03.009
    31 https://doi.org/10.1016/j.fcr.2011.04.014
    32 https://doi.org/10.1016/j.fcr.2013.07.024
    33 https://doi.org/10.1016/j.fcr.2013.12.012
    34 https://doi.org/10.1016/j.fcr.2015.06.014
    35 https://doi.org/10.1016/j.fcr.2015.10.014
    36 https://doi.org/10.1016/j.fcr.2017.03.002
    37 https://doi.org/10.1016/j.geoderma.2015.11.027
    38 https://doi.org/10.1016/s0065-2113(05)88004-6
    39 https://doi.org/10.1016/s0378-4290(02)00083-7
    40 https://doi.org/10.1016/s0378-4290(03)00068-6
    41 https://doi.org/10.1016/s1002-0160(15)60030-3
    42 https://doi.org/10.1016/s1161-0301(02)00101-6
    43 https://doi.org/10.1016/s1161-0301(02)00107-7
    44 https://doi.org/10.1017/s0014479715000113
    45 https://doi.org/10.1093/jxb/erp116
    46 https://doi.org/10.1093/jxb/erq297
    47 https://doi.org/10.1111/j.1744-7348.2007.00195.x
    48 https://doi.org/10.1175/2008jcli2605.1
    49 https://doi.org/10.1371/journal.pone.0153695
    50 https://doi.org/10.2134/agronj2004.1258
    51 https://doi.org/10.2134/agronj2015.0610
    52 https://doi.org/10.2134/jeq2007.0601
    53 https://doi.org/10.2135/cropsci2002.8270
    54 https://doi.org/10.2135/cropsci2003.2100
    55 schema:datePublished 2019-03-23
    56 schema:datePublishedReg 2019-03-23
    57 schema:description Intensive use of groundwater and chemical fertilizer has led to serious negative impacts on environmental conditions in the North China Plain. The main objective of this study was to evaluate the best management production strategies for winter wheat that increase yield and reduce environmental impacts. This study combined field data with model analysis using the CERES-Wheat model to evaluate long-term winter wheat productivity and nitrogen use in response to plant density and nitrogen rate under limiting irrigation conditions. The CERES-Wheat model was calibrated and evaluated with 3 years of data which consisted of plant density, nitrogen rates and irrigation treatments. The simulated results using historical weather data showed that grain yield and nitrogen use were sensitive to different management practices including plant density, nitrogen rate and amount of irrigation applications. Nitrogen application of 180 kg ha−1 with 300 plants m−2 improved long-term nitrogen use, stabilized grain yield, produced the highest net return, and decreased soil residual nitrogen to reduce environment risk. There was a positive correlation between canopy nitrogen and grain yield. Compared with current nitrogen recommendations (240 kg ha−1), N rate of 180 kg ha−1 increased partial factor productivity and agronomic efficiency by about 32% and 33% due to increase in nitrogen uptake efficiency and reduced soil residual nitrogen. In conclusion, results of this study indicated that the CERES-Wheat model was a useful tool to evaluate alternative management practices in order to optimize yield and nitrogen use under limited irrigation conditions.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf sg:journal.1136667
    62 schema:name DSSAT-CERES-Wheat model to optimize plant density and nitrogen best management practices
    63 schema:pagination 1-14
    64 schema:productId N16b9982b9fd04412bb24bdb40db361c5
    65 N6296ddafacb5473dae525791d2441af8
    66 N63ff5546893a4252a7bb254a7017872c
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112965549
    68 https://doi.org/10.1007/s10705-019-09984-1
    69 schema:sdDatePublished 2019-04-11T13:01
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N1f9d6f91b79c4d9d8bb28857f73b7417
    72 schema:url https://link.springer.com/10.1007%2Fs10705-019-09984-1
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0305f2d8222743078e44159f6b45c668 rdf:first N9826c2587db442378fabb3c9885618b0
    77 rdf:rest Nf1bbd85bb7bf412a9e94b0db000cd625
    78 N0ec1352168234d43875ac6a0ec7ff783 schema:affiliation https://www.grid.ac/institutes/grid.252546.2
    79 schema:familyName Batchelor
    80 schema:givenName William D.
    81 rdf:type schema:Person
    82 N16953c4edc3141efa66af06e1da18850 rdf:first N4c714a2c10e14f17931ea97eac12b502
    83 rdf:rest N9706c662ab1b445393e51e1248e3ad2a
    84 N16b9982b9fd04412bb24bdb40db361c5 schema:name dimensions_id
    85 schema:value pub.1112965549
    86 rdf:type schema:PropertyValue
    87 N1f9d6f91b79c4d9d8bb28857f73b7417 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N295b2d7288344f598554d1307c6ddf2a schema:name College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China
    90 rdf:type schema:Organization
    91 N4a76f9f4fc0144edafab5bd1e50736e0 schema:affiliation https://www.grid.ac/institutes/grid.252546.2
    92 schema:familyName Zhang
    93 schema:givenName Di
    94 rdf:type schema:Person
    95 N4c714a2c10e14f17931ea97eac12b502 schema:affiliation Nd87fc5692a2a43419b2944fa97c880a7
    96 schema:familyName Li
    97 schema:givenName Dongxiao
    98 rdf:type schema:Person
    99 N4db58918986448fdb1b7984befb6a52b rdf:first N89225c700d4b4552a4a9cbdddb9d5609
    100 rdf:rest rdf:nil
    101 N6296ddafacb5473dae525791d2441af8 schema:name readcube_id
    102 schema:value 8f06e40a675c35e13c0d7e1f4ab5301fdd18f8719b67f1488ae57dab77b2d0db
    103 rdf:type schema:PropertyValue
    104 N63ff5546893a4252a7bb254a7017872c schema:name doi
    105 schema:value 10.1007/s10705-019-09984-1
    106 rdf:type schema:PropertyValue
    107 N72fc73663c8b4aae982c748d6c00df60 schema:affiliation N295b2d7288344f598554d1307c6ddf2a
    108 schema:familyName Wang
    109 schema:givenName Hongguang
    110 rdf:type schema:Person
    111 N7485621c440846b8a31a13e883b80ab0 schema:affiliation Nfdd2669470e140518de39fd018df38ef
    112 schema:familyName Li
    113 schema:givenName Ruiqi
    114 rdf:type schema:Person
    115 N89225c700d4b4552a4a9cbdddb9d5609 schema:affiliation Na129c1bbecc6460999cd34e82d94188e
    116 schema:familyName Li
    117 schema:givenName Yanming
    118 rdf:type schema:Person
    119 N9706c662ab1b445393e51e1248e3ad2a rdf:first Ne0a291429b334848b9c81831867fb0f8
    120 rdf:rest N0305f2d8222743078e44159f6b45c668
    121 N9826c2587db442378fabb3c9885618b0 schema:affiliation https://www.grid.ac/institutes/grid.464354.4
    122 schema:familyName Ju
    123 schema:givenName Hui
    124 rdf:type schema:Person
    125 N9ac9de67561a4e30afc22a90aba4cdd2 rdf:first N0ec1352168234d43875ac6a0ec7ff783
    126 rdf:rest N4db58918986448fdb1b7984befb6a52b
    127 N9ffd008eb1a847a5ba0e9df7c8385f63 rdf:first N72fc73663c8b4aae982c748d6c00df60
    128 rdf:rest N16953c4edc3141efa66af06e1da18850
    129 Na129c1bbecc6460999cd34e82d94188e schema:name College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China
    130 rdf:type schema:Organization
    131 Nb98683a74a8a49e2a3029b1aa0b12f0c rdf:first N4a76f9f4fc0144edafab5bd1e50736e0
    132 rdf:rest N9ffd008eb1a847a5ba0e9df7c8385f63
    133 Nd87fc5692a2a43419b2944fa97c880a7 schema:name College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China
    134 rdf:type schema:Organization
    135 Ndcdd9d29c0f645748296f936f929bc39 schema:name College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China
    136 rdf:type schema:Organization
    137 Ne0a291429b334848b9c81831867fb0f8 schema:affiliation Ndcdd9d29c0f645748296f936f929bc39
    138 schema:familyName Li
    139 schema:givenName Haoran
    140 rdf:type schema:Person
    141 Nf1bbd85bb7bf412a9e94b0db000cd625 rdf:first N7485621c440846b8a31a13e883b80ab0
    142 rdf:rest N9ac9de67561a4e30afc22a90aba4cdd2
    143 Nfdd2669470e140518de39fd018df38ef schema:name College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China
    144 rdf:type schema:Organization
    145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Biological Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Plant Biology
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1136667 schema:issn 1385-1314
    152 1573-0867
    153 schema:name Nutrient Cycling in Agroecosystems
    154 rdf:type schema:Periodical
    155 sg:pub.10.1007/s00271-008-0131-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014895228
    156 https://doi.org/10.1007/s00271-008-0131-2
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10705-007-9103-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018692711
    159 https://doi.org/10.1007/s10705-007-9103-9
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11104-006-0055-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051658523
    162 https://doi.org/10.1007/s11104-006-0055-7
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s11104-010-0530-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042126467
    165 https://doi.org/10.1007/s11104-010-0530-z
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11104-013-1876-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035469546
    168 https://doi.org/10.1007/s11104-013-1876-9
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s11104-014-2190-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022359033
    171 https://doi.org/10.1007/s11104-014-2190-x
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11119-008-9068-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052194330
    174 https://doi.org/10.1007/s11119-008-9068-y
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s12665-015-4867-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036721813
    177 https://doi.org/10.1007/s12665-015-4867-8
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1023/a:1021107026067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017285472
    180 https://doi.org/10.1023/a:1021107026067
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ngeo325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036209430
    183 https://doi.org/10.1038/ngeo325
    184 rdf:type schema:CreativeWork
    185 https://app.dimensions.ai/details/publication/pub.1079089000 schema:CreativeWork
    186 https://doi.org/10.1016/0378-4290(91)90040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048724755
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.agee.2014.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051294854
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.agee.2015.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050053508
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.agsy.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024656719
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.agwat.2005.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016851423
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.agwat.2005.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035135211
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.agwat.2006.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780336
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.agwat.2010.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044320202
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.agwat.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051591743
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.agwat.2014.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049162306
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.agwat.2016.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009911490
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.eja.2007.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051710691
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.eja.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053744419
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.eja.2015.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047163424
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.fcr.2003.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050907800
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.fcr.2011.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138013
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.fcr.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023341315
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.fcr.2013.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053081976
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.fcr.2013.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045500142
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.fcr.2015.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044649421
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.fcr.2015.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016613231
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.fcr.2017.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084074328
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.geoderma.2015.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049585806
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/s0065-2113(05)88004-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030556363
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/s0378-4290(02)00083-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023605546
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/s0378-4290(03)00068-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043273046
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/s1002-0160(15)60030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050837720
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/s1161-0301(02)00101-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000616602
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/s1161-0301(02)00107-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001614809
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1017/s0014479715000113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054081795
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/jxb/erp116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032709754
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/jxb/erq297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033537871
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1111/j.1744-7348.2007.00195.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030695819
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1175/2008jcli2605.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032232313
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1371/journal.pone.0153695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020924419
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.2134/agronj2004.1258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995177
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.2134/agronj2015.0610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068997276
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.2134/jeq2007.0601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069009786
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.2135/cropsci2002.8270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106935965
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.2135/cropsci2003.2100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028209
    265 rdf:type schema:CreativeWork
    266 https://www.grid.ac/institutes/grid.252546.2 schema:alternateName Auburn University
    267 schema:name Biosystems Engineering Department, Auburn University, 36830, Auburn, AL, USA
    268 College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, 071000, Baoding, Hebei, China
    269 Yangling Vocational & Technical College, 712100, Yangling, Shaanxi, China
    270 rdf:type schema:Organization
    271 https://www.grid.ac/institutes/grid.464354.4 schema:alternateName Institute of Environment and Sustainable Development in Agriculture
    272 schema:name Biosystems Engineering Department, Auburn University, 36830, Auburn, AL, USA
    273 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, 100081, Beijing, China
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...