N2O emissions and NO3− leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12-18

AUTHORS

M. Kasper, C. Foldal, B. Kitzler, E. Haas, P. Strauss, A. Eder, S. Zechmeister-Boltenstern, B. Amon

ABSTRACT

National emission inventories for UN FCCC reporting estimate regional soil nitrous oxide (N2O) fluxes by considering the amount of N input as the only influencing factor for N2O emissions. Our aim was to deepen the understanding of N2O fluxes from agricultural soils, including region specific soil and climate properties into the estimation of emission to find targeted mitigation measures for the reduction of nitrogen losses and GHG emissions. Within this project, N2O emissions and nitrate (NO3−) leaching were modelled under spatially distinct environmental conditions in two agricultural regions in Austria taking into account region specific soil and climatic properties, management practices and crop rotations. The LandscapeDNDC ecosystem model was used to calculate N2O emissions and NO3− leaching reflecting different types of vegetation, management operations and crop rotations. In addition, N input and N fluxes were assessed and N2O emissions were calculated. This approach allowed identifying hot spots of N2O emissions. Results show that certain combinations of soil type, weather conditions, crop and management can lead to high emissions. Mean values ranged from 0.15 to 1.29 kg N2O–N ha−1 year−1 (Marchfeld) and 0.26 to 0.52 kg N2O–N ha−1 year−1 (Grieskirchen). Nitrate leaching, which strongly dominated N-losses, often reacted opposite to N2O emissions. Larger quantities of NO3− were lost during years of higher precipitation, especially if winter barley was cultivated on sandy soils. Taking into account the detected hot spots of N2O emissions and NO3− leaching most efficient measures can be addressed to mitigate environmental impacts while maximising crop production. More... »

PAGES

95-111

References to SciGraph publications

  • 2012-08-19. LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale in LANDSCAPE ECOLOGY
  • 1999-10. Effects of soil solution on the dynamics of N2O emissions: a review in NUTRIENT CYCLING IN AGROECOSYSTEMS
  • 2014-09-04. A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems in PLANT AND SOIL
  • 2015-02-19. Indirect nitrogen losses of managed soils contributing to greenhouse emissions of agricultural areas in Austria: results from lysimeter studies in NUTRIENT CYCLING IN AGROECOSYSTEMS
  • 2011-07-23. Modeling N2O emissions from steppe in Inner Mongolia, China, with consideration of spring thaw and grazing intensity in PLANT AND SOIL
  • 2000-06. Using a boundary line approach to analyze N2O flux data from agricultural soils in NUTRIENT CYCLING IN AGROECOSYSTEMS
  • 2008-01-16. An Earth-system perspective of the global nitrogen cycle in NATURE
  • 2014-03-12. Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC in ECOLOGICAL RESEARCH
  • 2009-07-21. Linking carbon and nitrogen mineralization with microbial responses to substrate availability — the DECONIT model in PLANT AND SOIL
  • 2004-03. Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models in PLANT AND SOIL
  • 2000-11. Modeling Trace Gas Emissions from Agricultural Ecosystems in NUTRIENT CYCLING IN AGROECOSYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10705-018-9965-z

    DOI

    http://dx.doi.org/10.1007/s10705-018-9965-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110757172


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5173.0", 
              "name": [
                "Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kasper", 
            "givenName": "M.", 
            "id": "sg:person.015451732203.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015451732203.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5173.0", 
              "name": [
                "Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Foldal", 
            "givenName": "C.", 
            "id": "sg:person.012774175333.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774175333.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Federal Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitzler", 
            "givenName": "B.", 
            "id": "sg:person.01175523605.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175523605.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Meteorology and Climate Research \u2013 Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institute of Meteorology and Climate Research \u2013 Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haas", 
            "givenName": "E.", 
            "id": "sg:person.0650543635.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650543635.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bundesamt f\u00fcr Wasserwirtschaft, Institut f\u00fcr Kulturtechnik & Bodenwasserhaushalt, Pollnbergstra\u00dfe 1, 3252, Petzenkirchen, Austria", 
              "id": "http://www.grid.ac/institutes/grid.451537.1", 
              "name": [
                "Bundesamt f\u00fcr Wasserwirtschaft, Institut f\u00fcr Kulturtechnik & Bodenwasserhaushalt, Pollnbergstra\u00dfe 1, 3252, Petzenkirchen, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strauss", 
            "givenName": "P.", 
            "id": "sg:person.013600401054.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013600401054.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bundesamt f\u00fcr Wasserwirtschaft, Institut f\u00fcr Kulturtechnik & Bodenwasserhaushalt, Pollnbergstra\u00dfe 1, 3252, Petzenkirchen, Austria", 
              "id": "http://www.grid.ac/institutes/grid.451537.1", 
              "name": [
                "Bundesamt f\u00fcr Wasserwirtschaft, Institut f\u00fcr Kulturtechnik & Bodenwasserhaushalt, Pollnbergstra\u00dfe 1, 3252, Petzenkirchen, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eder", 
            "givenName": "A.", 
            "id": "sg:person.01271121363.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271121363.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5173.0", 
              "name": [
                "Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zechmeister-Boltenstern", 
            "givenName": "S.", 
            "id": "sg:person.01360325547.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360325547.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.435606.2", 
              "name": [
                "Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria", 
                "Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amon", 
            "givenName": "B.", 
            "id": "sg:person.013230743701.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013230743701.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1009842011599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032416825", 
              "https://doi.org/10.1023/a:1009842011599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-011-0908-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023722148", 
              "https://doi.org/10.1007/s11104-011-0908-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:plso.0000030186.81212.fb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029716858", 
              "https://doi.org/10.1023/b:plso.0000030186.81212.fb"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11284-014-1136-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015316665", 
              "https://doi.org/10.1007/s11284-014-1136-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-009-0108-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002664726", 
              "https://doi.org/10.1007/s11104-009-0108-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034170106", 
              "https://doi.org/10.1038/nature06592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-014-2255-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032130745", 
              "https://doi.org/10.1007/s11104-014-2255-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10705-015-9682-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040395230", 
              "https://doi.org/10.1007/s10705-015-9682-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10980-012-9772-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032368749", 
              "https://doi.org/10.1007/s10980-012-9772-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009854220769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037852627", 
              "https://doi.org/10.1023/a:1009854220769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009859006242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043091008", 
              "https://doi.org/10.1023/a:1009859006242"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12-18", 
        "datePublishedReg": "2018-12-18", 
        "description": "National emission inventories for UN FCCC reporting estimate regional soil nitrous oxide (N2O) fluxes by considering the amount of N input as the only influencing factor for N2O emissions. Our aim was to deepen the understanding of N2O fluxes from agricultural soils, including region specific soil and climate properties into the estimation of emission to find targeted mitigation measures for the reduction of nitrogen losses and GHG emissions. Within this project, N2O emissions and nitrate (NO3\u2212) leaching were modelled under spatially distinct environmental conditions in two agricultural regions in Austria taking into account region specific soil and climatic properties, management practices and crop rotations. The LandscapeDNDC ecosystem model was used to calculate N2O emissions and NO3\u2212 leaching reflecting different types of vegetation, management operations and crop rotations. In addition, N input and N fluxes were assessed and N2O emissions were calculated. This approach allowed identifying hot spots of N2O emissions. Results show that certain combinations of soil type, weather conditions, crop and management can lead to high emissions. Mean values ranged from 0.15 to 1.29\u00a0kg N2O\u2013N\u00a0ha\u22121\u00a0year\u22121 (Marchfeld) and 0.26 to 0.52\u00a0kg N2O\u2013N\u00a0ha\u22121\u00a0year\u22121 (Grieskirchen). Nitrate leaching, which strongly dominated N-losses, often reacted opposite to N2O emissions. Larger quantities of NO3\u2212 were lost during years of higher precipitation, especially if winter barley was cultivated on sandy soils. Taking into account the detected hot spots of N2O emissions and NO3\u2212 leaching most efficient measures can be addressed to mitigate environmental impacts while maximising crop production.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10705-018-9965-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136667", 
            "issn": [
              "1385-1314", 
              "1573-0867"
            ], 
            "name": "Nutrient Cycling in Agroecosystems", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "113"
          }
        ], 
        "keywords": [
          "N2O emissions", 
          "crop rotation", 
          "nitrate leaching", 
          "N input", 
          "specific soil", 
          "soil nitrous oxide fluxes", 
          "nitrous oxide fluxes", 
          "influence of soil", 
          "detected hot spots", 
          "crop production", 
          "winter barley", 
          "N losses", 
          "management practices", 
          "agricultural regions", 
          "nitrogen loss", 
          "sandy soil", 
          "distinct environmental conditions", 
          "soil types", 
          "agricultural soils", 
          "UN FCCC", 
          "GHG emissions", 
          "N2O fluxes", 
          "oxide fluxes", 
          "estimation of emissions", 
          "National Emissions Inventory", 
          "soil", 
          "ecosystem model", 
          "high precipitation", 
          "management operations", 
          "weather conditions", 
          "climatic properties", 
          "crops", 
          "environmental impacts", 
          "climate properties", 
          "environmental conditions", 
          "hot spots", 
          "leaching", 
          "mitigation measures", 
          "higher emissions", 
          "emission inventory", 
          "modelling approach", 
          "efficient measures", 
          "N2O", 
          "barley", 
          "large quantities", 
          "rotation", 
          "vegetation", 
          "emission", 
          "input", 
          "flux", 
          "production", 
          "climate", 
          "mean value", 
          "management", 
          "region", 
          "Austria", 
          "spots", 
          "precipitation", 
          "conditions", 
          "Inventory", 
          "FCCC", 
          "practice", 
          "impact", 
          "certain combinations", 
          "loss", 
          "quantity", 
          "types", 
          "measures", 
          "years", 
          "different types", 
          "amount", 
          "reduction", 
          "combination", 
          "understanding", 
          "project", 
          "influence", 
          "approach", 
          "values", 
          "factors", 
          "estimation", 
          "aim", 
          "addition", 
          "results", 
          "properties", 
          "account", 
          "model", 
          "operation"
        ], 
        "name": "N2O emissions and NO3\u2212 leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach", 
        "pagination": "95-111", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110757172"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10705-018-9965-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10705-018-9965-z", 
          "https://app.dimensions.ai/details/publication/pub.1110757172"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_754.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10705-018-9965-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10705-018-9965-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10705-018-9965-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10705-018-9965-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10705-018-9965-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      22 PREDICATES      123 URIs      104 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10705-018-9965-z schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author Ne702e1ae7fb840f3bacbe3475fc9c29e
    4 schema:citation sg:pub.10.1007/s10705-015-9682-9
    5 sg:pub.10.1007/s10980-012-9772-x
    6 sg:pub.10.1007/s11104-009-0108-9
    7 sg:pub.10.1007/s11104-011-0908-6
    8 sg:pub.10.1007/s11104-014-2255-x
    9 sg:pub.10.1007/s11284-014-1136-3
    10 sg:pub.10.1023/a:1009842011599
    11 sg:pub.10.1023/a:1009854220769
    12 sg:pub.10.1023/a:1009859006242
    13 sg:pub.10.1023/b:plso.0000030186.81212.fb
    14 sg:pub.10.1038/nature06592
    15 schema:datePublished 2018-12-18
    16 schema:datePublishedReg 2018-12-18
    17 schema:description National emission inventories for UN FCCC reporting estimate regional soil nitrous oxide (N2O) fluxes by considering the amount of N input as the only influencing factor for N2O emissions. Our aim was to deepen the understanding of N2O fluxes from agricultural soils, including region specific soil and climate properties into the estimation of emission to find targeted mitigation measures for the reduction of nitrogen losses and GHG emissions. Within this project, N2O emissions and nitrate (NO3−) leaching were modelled under spatially distinct environmental conditions in two agricultural regions in Austria taking into account region specific soil and climatic properties, management practices and crop rotations. The LandscapeDNDC ecosystem model was used to calculate N2O emissions and NO3− leaching reflecting different types of vegetation, management operations and crop rotations. In addition, N input and N fluxes were assessed and N2O emissions were calculated. This approach allowed identifying hot spots of N2O emissions. Results show that certain combinations of soil type, weather conditions, crop and management can lead to high emissions. Mean values ranged from 0.15 to 1.29 kg N2O–N ha−1 year−1 (Marchfeld) and 0.26 to 0.52 kg N2O–N ha−1 year−1 (Grieskirchen). Nitrate leaching, which strongly dominated N-losses, often reacted opposite to N2O emissions. Larger quantities of NO3− were lost during years of higher precipitation, especially if winter barley was cultivated on sandy soils. Taking into account the detected hot spots of N2O emissions and NO3− leaching most efficient measures can be addressed to mitigate environmental impacts while maximising crop production.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N6b4fe6c19e4b4bccaee19a3acee73b18
    22 Nae423f8f8612476dad93babc13d79fcb
    23 sg:journal.1136667
    24 schema:keywords Austria
    25 FCCC
    26 GHG emissions
    27 Inventory
    28 N input
    29 N losses
    30 N2O
    31 N2O emissions
    32 N2O fluxes
    33 National Emissions Inventory
    34 UN FCCC
    35 account
    36 addition
    37 agricultural regions
    38 agricultural soils
    39 aim
    40 amount
    41 approach
    42 barley
    43 certain combinations
    44 climate
    45 climate properties
    46 climatic properties
    47 combination
    48 conditions
    49 crop production
    50 crop rotation
    51 crops
    52 detected hot spots
    53 different types
    54 distinct environmental conditions
    55 ecosystem model
    56 efficient measures
    57 emission
    58 emission inventory
    59 environmental conditions
    60 environmental impacts
    61 estimation
    62 estimation of emissions
    63 factors
    64 flux
    65 high precipitation
    66 higher emissions
    67 hot spots
    68 impact
    69 influence
    70 influence of soil
    71 input
    72 large quantities
    73 leaching
    74 loss
    75 management
    76 management operations
    77 management practices
    78 mean value
    79 measures
    80 mitigation measures
    81 model
    82 modelling approach
    83 nitrate leaching
    84 nitrogen loss
    85 nitrous oxide fluxes
    86 operation
    87 oxide fluxes
    88 practice
    89 precipitation
    90 production
    91 project
    92 properties
    93 quantity
    94 reduction
    95 region
    96 results
    97 rotation
    98 sandy soil
    99 soil
    100 soil nitrous oxide fluxes
    101 soil types
    102 specific soil
    103 spots
    104 types
    105 understanding
    106 values
    107 vegetation
    108 weather conditions
    109 winter barley
    110 years
    111 schema:name N2O emissions and NO3− leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach
    112 schema:pagination 95-111
    113 schema:productId N83da56404a054907b5fe949952940f2c
    114 Nb050b9c9f0ae4050943d1a4306da22b3
    115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110757172
    116 https://doi.org/10.1007/s10705-018-9965-z
    117 schema:sdDatePublished 2022-05-20T07:33
    118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    119 schema:sdPublisher N82652ce159e04730aec493a10dc717f8
    120 schema:url https://doi.org/10.1007/s10705-018-9965-z
    121 sgo:license sg:explorer/license/
    122 sgo:sdDataset articles
    123 rdf:type schema:ScholarlyArticle
    124 N015ec0e0e3a54c17bb16ba1d230f4462 rdf:first sg:person.012774175333.05
    125 rdf:rest N6a54056c23dd479d898d0d0ecb27c084
    126 N2c68efbff6dc4dc298b19d7d9c6f9dde rdf:first sg:person.013230743701.53
    127 rdf:rest rdf:nil
    128 N442a4ed0d91d48e8b20d31e27ff7fb1d rdf:first sg:person.0650543635.61
    129 rdf:rest Nf1f576f8b20b4b3fa18037848954a630
    130 N52594a5e16da4d5cbd1267ef12baa684 rdf:first sg:person.01360325547.29
    131 rdf:rest N2c68efbff6dc4dc298b19d7d9c6f9dde
    132 N6a54056c23dd479d898d0d0ecb27c084 rdf:first sg:person.01175523605.48
    133 rdf:rest N442a4ed0d91d48e8b20d31e27ff7fb1d
    134 N6b4fe6c19e4b4bccaee19a3acee73b18 schema:volumeNumber 113
    135 rdf:type schema:PublicationVolume
    136 N82652ce159e04730aec493a10dc717f8 schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 N83da56404a054907b5fe949952940f2c schema:name doi
    139 schema:value 10.1007/s10705-018-9965-z
    140 rdf:type schema:PropertyValue
    141 Nae423f8f8612476dad93babc13d79fcb schema:issueNumber 1
    142 rdf:type schema:PublicationIssue
    143 Nb050b9c9f0ae4050943d1a4306da22b3 schema:name dimensions_id
    144 schema:value pub.1110757172
    145 rdf:type schema:PropertyValue
    146 Nc6b5d16cd273428cb02bde16525ded72 rdf:first sg:person.01271121363.76
    147 rdf:rest N52594a5e16da4d5cbd1267ef12baa684
    148 Ne702e1ae7fb840f3bacbe3475fc9c29e rdf:first sg:person.015451732203.41
    149 rdf:rest N015ec0e0e3a54c17bb16ba1d230f4462
    150 Nf1f576f8b20b4b3fa18037848954a630 rdf:first sg:person.013600401054.23
    151 rdf:rest Nc6b5d16cd273428cb02bde16525ded72
    152 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Environmental Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Soil Sciences
    157 rdf:type schema:DefinedTerm
    158 sg:journal.1136667 schema:issn 1385-1314
    159 1573-0867
    160 schema:name Nutrient Cycling in Agroecosystems
    161 schema:publisher Springer Nature
    162 rdf:type schema:Periodical
    163 sg:person.01175523605.48 schema:affiliation grid-institutes:None
    164 schema:familyName Kitzler
    165 schema:givenName B.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175523605.48
    167 rdf:type schema:Person
    168 sg:person.01271121363.76 schema:affiliation grid-institutes:grid.451537.1
    169 schema:familyName Eder
    170 schema:givenName A.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271121363.76
    172 rdf:type schema:Person
    173 sg:person.012774175333.05 schema:affiliation grid-institutes:grid.5173.0
    174 schema:familyName Foldal
    175 schema:givenName C.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774175333.05
    177 rdf:type schema:Person
    178 sg:person.013230743701.53 schema:affiliation grid-institutes:grid.435606.2
    179 schema:familyName Amon
    180 schema:givenName B.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013230743701.53
    182 rdf:type schema:Person
    183 sg:person.013600401054.23 schema:affiliation grid-institutes:grid.451537.1
    184 schema:familyName Strauss
    185 schema:givenName P.
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013600401054.23
    187 rdf:type schema:Person
    188 sg:person.01360325547.29 schema:affiliation grid-institutes:grid.5173.0
    189 schema:familyName Zechmeister-Boltenstern
    190 schema:givenName S.
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360325547.29
    192 rdf:type schema:Person
    193 sg:person.015451732203.41 schema:affiliation grid-institutes:grid.5173.0
    194 schema:familyName Kasper
    195 schema:givenName M.
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015451732203.41
    197 rdf:type schema:Person
    198 sg:person.0650543635.61 schema:affiliation grid-institutes:grid.7892.4
    199 schema:familyName Haas
    200 schema:givenName E.
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650543635.61
    202 rdf:type schema:Person
    203 sg:pub.10.1007/s10705-015-9682-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040395230
    204 https://doi.org/10.1007/s10705-015-9682-9
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s10980-012-9772-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032368749
    207 https://doi.org/10.1007/s10980-012-9772-x
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s11104-009-0108-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002664726
    210 https://doi.org/10.1007/s11104-009-0108-9
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s11104-011-0908-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023722148
    213 https://doi.org/10.1007/s11104-011-0908-6
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11104-014-2255-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032130745
    216 https://doi.org/10.1007/s11104-014-2255-x
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s11284-014-1136-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015316665
    219 https://doi.org/10.1007/s11284-014-1136-3
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1023/a:1009842011599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032416825
    222 https://doi.org/10.1023/a:1009842011599
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1023/a:1009854220769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852627
    225 https://doi.org/10.1023/a:1009854220769
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1023/a:1009859006242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043091008
    228 https://doi.org/10.1023/a:1009859006242
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1023/b:plso.0000030186.81212.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1029716858
    231 https://doi.org/10.1023/b:plso.0000030186.81212.fb
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature06592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034170106
    234 https://doi.org/10.1038/nature06592
    235 rdf:type schema:CreativeWork
    236 grid-institutes:None schema:alternateName Federal Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria
    237 schema:name Federal Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria
    238 rdf:type schema:Organization
    239 grid-institutes:grid.435606.2 schema:alternateName Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469, Potsdam, Germany
    240 schema:name Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria
    241 Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469, Potsdam, Germany
    242 rdf:type schema:Organization
    243 grid-institutes:grid.451537.1 schema:alternateName Bundesamt für Wasserwirtschaft, Institut für Kulturtechnik & Bodenwasserhaushalt, Pollnbergstraße 1, 3252, Petzenkirchen, Austria
    244 schema:name Bundesamt für Wasserwirtschaft, Institut für Kulturtechnik & Bodenwasserhaushalt, Pollnbergstraße 1, 3252, Petzenkirchen, Austria
    245 rdf:type schema:Organization
    246 grid-institutes:grid.5173.0 schema:alternateName Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria
    247 schema:name Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Strasse 82, 1190, Wien, Austria
    248 rdf:type schema:Organization
    249 grid-institutes:grid.7892.4 schema:alternateName Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
    250 schema:name Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...