Predicting nitrogen leaching with the modified LEACHM model: validation in soils receiving long-term application of animal manure composts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

Kei Asada, Sadao Eguchi, Ayumi Tsunekawa, Masaki Tsuji, Sunao Itahashi, Hidetaka Katou

ABSTRACT

A variety of process-based models have been developed for predicting nitrogen (N) dynamics in agro-ecosystem; however, no reliable models have been validated for N leaching from soils receiving a long-term application of different types of animal manure composts. The Leaching Estimation and Chemistry Model (LEACHM) was recently modified by incorporating the basic structure of Rothamsted Carbon Model for extending its ability to describe soil organic matter decomposition and subsequent N leaching in soils rich in organic matter. We evaluate the applicability of the modified LEACHM in cropped Yellow soils receiving 10-year application of cattle or swine manure compost in addition to chemical fertilizers, where high-frequency field monitoring data of soil water contents, soil N contents and leachate N concentrations were available for the last 3 years. Particular attention was paid to determine all input parameters from independent measurements, parameterization from known soil properties or databases without optimisation to fit the measured field data. The model reasonably predicted temporal changes in the soil NH4-N and NO3-N contents, and inorganic N concentrations in the leachate as well as their differences due to different manure compost/chemical fertilizer applications. The simulations of leached N concentration yielded a Willmott index of agreement (IA) of 0.62–0.68, with those for soil moisture, soil nitrate content and crop N uptake all within an acceptable IA range. In view of the good performance without site-specific calibrations, the modified LEACHM appears to be a valuable tool for predicting N leaching from cropped soils receiving long-term manure compost applications. More... »

PAGES

209-225

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10705-015-9690-9

DOI

http://dx.doi.org/10.1007/s10705-015-9690-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000851199


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Agro-Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410826.9", 
          "name": [
            "National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, 305-8604, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asada", 
        "givenName": "Kei", 
        "id": "sg:person.0645365043.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645365043.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Agro-Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410826.9", 
          "name": [
            "National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, 305-8604, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eguchi", 
        "givenName": "Sadao", 
        "id": "sg:person.01162566526.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162566526.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Aichi Agricultural Research Center, Yazakosagamine 1-1, 480-1193, Nagakute, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsunekawa", 
        "givenName": "Ayumi", 
        "id": "sg:person.0667637426.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667637426.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Aichi Agricultural Research Center, Yazakosagamine 1-1, 480-1193, Nagakute, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuji", 
        "givenName": "Masaki", 
        "id": "sg:person.014017433372.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017433372.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Agro-Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410826.9", 
          "name": [
            "National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, 305-8604, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Itahashi", 
        "givenName": "Sunao", 
        "id": "sg:person.0677261727.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677261727.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Agro-Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410826.9", 
          "name": [
            "National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, 305-8604, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katou", 
        "givenName": "Hidetaka", 
        "id": "sg:person.0575401051.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575401051.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003740100416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000602218", 
          "https://doi.org/10.1007/s003740100416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00380768.2000.10409133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008235149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61094-3_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008699300", 
          "https://doi.org/10.1007/978-3-642-61094-3_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61094-3_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008699300", 
          "https://doi.org/10.1007/978-3-642-61094-3_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420032635.ch4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010373096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0269-7491(02)00233-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014002631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2007.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017484066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2008.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019787969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2011.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023004443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-013-1809-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027086175", 
          "https://doi.org/10.1007/s11104-013-1809-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-013-1809-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027086175", 
          "https://doi.org/10.1007/s11104-013-1809-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-004-1519-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029021403", 
          "https://doi.org/10.1007/s00442-004-1519-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2013.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030239398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1982)063<1309:scoteo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033569790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-2743.1991.tb00853.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036915716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2480/agrmet.67.4.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037971421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2480/agrmet.67.4.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037971421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004452515423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038475440", 
          "https://doi.org/10.1023/a:1004452515423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2009.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043095209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043331772", 
          "https://doi.org/10.1038/nclimate1951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eja.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044551974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2011.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045786413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jpln.200725102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047043215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jpln.200725102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047043215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1012878108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047772519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-0717(97)00256-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048317190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eja.2009.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049050047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8809(87)90099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050155298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8809(87)90099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050155298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051306123", 
          "https://doi.org/10.1038/ngeo608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051306123", 
          "https://doi.org/10.1038/ngeo608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2965/jswe1978.8.486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051341606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-0717(02)00083-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052571239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/jeq2008.0277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069009974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1980.03615995004400050002x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069043312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/advagricsystmodel2.c1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088349796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "A variety of process-based models have been developed for predicting nitrogen (N) dynamics in agro-ecosystem; however, no reliable models have been validated for N leaching from soils receiving a long-term application of different types of animal manure composts. The Leaching Estimation and Chemistry Model (LEACHM) was recently modified by incorporating the basic structure of Rothamsted Carbon Model for extending its ability to describe soil organic matter decomposition and subsequent N leaching in soils rich in organic matter. We evaluate the applicability of the modified LEACHM in cropped Yellow soils receiving 10-year application of cattle or swine manure compost in addition to chemical fertilizers, where high-frequency field monitoring data of soil water contents, soil N contents and leachate N concentrations were available for the last 3 years. Particular attention was paid to determine all input parameters from independent measurements, parameterization from known soil properties or databases without optimisation to fit the measured field data. The model reasonably predicted temporal changes in the soil NH4-N and NO3-N contents, and inorganic N concentrations in the leachate as well as their differences due to different manure compost/chemical fertilizer applications. The simulations of leached N concentration yielded a Willmott index of agreement (IA) of 0.62\u20130.68, with those for soil moisture, soil nitrate content and crop N uptake all within an acceptable IA range. In view of the good performance without site-specific calibrations, the modified LEACHM appears to be a valuable tool for predicting N leaching from cropped soils receiving long-term manure compost applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10705-015-9690-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136667", 
        "issn": [
          "1385-1314", 
          "1573-0867"
        ], 
        "name": "Nutrient Cycling in Agroecosystems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "102"
      }
    ], 
    "name": "Predicting nitrogen leaching with the modified LEACHM model: validation in soils receiving long-term application of animal manure composts", 
    "pagination": "209-225", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "040ddd874e7cd370c8c0c29bb3453b5703ab6136f20bd9ee79eeddb291acde0b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10705-015-9690-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000851199"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10705-015-9690-9", 
      "https://app.dimensions.ai/details/publication/pub.1000851199"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000529.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10705-015-9690-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10705-015-9690-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10705-015-9690-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10705-015-9690-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10705-015-9690-9'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10705-015-9690-9 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Nc1c4c9d2582b4dfb92c92bfd05c900f4
4 schema:citation sg:pub.10.1007/978-3-642-61094-3_17
5 sg:pub.10.1007/s003740100416
6 sg:pub.10.1007/s00442-004-1519-1
7 sg:pub.10.1007/s11104-013-1809-7
8 sg:pub.10.1023/a:1004452515423
9 sg:pub.10.1038/nclimate1951
10 sg:pub.10.1038/ngeo608
11 https://doi.org/10.1002/jpln.200725102
12 https://doi.org/10.1016/0167-8809(87)90099-5
13 https://doi.org/10.1016/j.agee.2011.10.013
14 https://doi.org/10.1016/j.agee.2011.12.007
15 https://doi.org/10.1016/j.agwat.2009.09.019
16 https://doi.org/10.1016/j.eja.2009.01.001
17 https://doi.org/10.1016/j.eja.2010.11.002
18 https://doi.org/10.1016/j.geoderma.2007.04.014
19 https://doi.org/10.1016/j.soilbio.2008.11.009
20 https://doi.org/10.1016/j.soilbio.2013.05.023
21 https://doi.org/10.1016/s0038-0717(02)00083-4
22 https://doi.org/10.1016/s0038-0717(97)00256-3
23 https://doi.org/10.1016/s0269-7491(02)00233-6
24 https://doi.org/10.1073/pnas.1012878108
25 https://doi.org/10.1080/00380768.2000.10409133
26 https://doi.org/10.1111/j.1475-2743.1991.tb00853.x
27 https://doi.org/10.1175/1520-0477(1982)063<1309:scoteo>2.0.co;2
28 https://doi.org/10.1201/9781420032635.ch4
29 https://doi.org/10.2134/advagricsystmodel2.c1
30 https://doi.org/10.2134/jeq2008.0277
31 https://doi.org/10.2136/sssaj1980.03615995004400050002x
32 https://doi.org/10.2480/agrmet.67.4.9
33 https://doi.org/10.2965/jswe1978.8.486
34 schema:datePublished 2015-06
35 schema:datePublishedReg 2015-06-01
36 schema:description A variety of process-based models have been developed for predicting nitrogen (N) dynamics in agro-ecosystem; however, no reliable models have been validated for N leaching from soils receiving a long-term application of different types of animal manure composts. The Leaching Estimation and Chemistry Model (LEACHM) was recently modified by incorporating the basic structure of Rothamsted Carbon Model for extending its ability to describe soil organic matter decomposition and subsequent N leaching in soils rich in organic matter. We evaluate the applicability of the modified LEACHM in cropped Yellow soils receiving 10-year application of cattle or swine manure compost in addition to chemical fertilizers, where high-frequency field monitoring data of soil water contents, soil N contents and leachate N concentrations were available for the last 3 years. Particular attention was paid to determine all input parameters from independent measurements, parameterization from known soil properties or databases without optimisation to fit the measured field data. The model reasonably predicted temporal changes in the soil NH4-N and NO3-N contents, and inorganic N concentrations in the leachate as well as their differences due to different manure compost/chemical fertilizer applications. The simulations of leached N concentration yielded a Willmott index of agreement (IA) of 0.62–0.68, with those for soil moisture, soil nitrate content and crop N uptake all within an acceptable IA range. In view of the good performance without site-specific calibrations, the modified LEACHM appears to be a valuable tool for predicting N leaching from cropped soils receiving long-term manure compost applications.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N4b07f06add2049c09440dce7a24a6233
41 Nf27533cff7a04fb2a92da3b453a584ab
42 sg:journal.1136667
43 schema:name Predicting nitrogen leaching with the modified LEACHM model: validation in soils receiving long-term application of animal manure composts
44 schema:pagination 209-225
45 schema:productId N78f921023177448db62b6b1d9b6d7685
46 Nbb163890ae56410ea4be6e883b9e8dbd
47 Nc22e22ba70c1493d8531e1bf5423c837
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000851199
49 https://doi.org/10.1007/s10705-015-9690-9
50 schema:sdDatePublished 2019-04-10T17:35
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N43e4046cfd4c427eb561d109291b530d
53 schema:url http://link.springer.com/10.1007%2Fs10705-015-9690-9
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N007be5dccb1d4c6ba1ea8daa7e72c74d rdf:first sg:person.01162566526.52
58 rdf:rest N3385a88069f54f7ba27e6a80acafdacf
59 N3376bb698580421dba35a607a709e852 schema:name Aichi Agricultural Research Center, Yazakosagamine 1-1, 480-1193, Nagakute, Aichi, Japan
60 rdf:type schema:Organization
61 N3385a88069f54f7ba27e6a80acafdacf rdf:first sg:person.0667637426.39
62 rdf:rest N5b9c0ace927348859154fe18c9871f26
63 N43e4046cfd4c427eb561d109291b530d schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N4b07f06add2049c09440dce7a24a6233 schema:volumeNumber 102
66 rdf:type schema:PublicationVolume
67 N56510551776a49808d5f68ed63599cdd schema:name Aichi Agricultural Research Center, Yazakosagamine 1-1, 480-1193, Nagakute, Aichi, Japan
68 rdf:type schema:Organization
69 N5b9c0ace927348859154fe18c9871f26 rdf:first sg:person.014017433372.69
70 rdf:rest Nad5d95ffa8f348f6ab9e275aaaa06cfa
71 N78f921023177448db62b6b1d9b6d7685 schema:name doi
72 schema:value 10.1007/s10705-015-9690-9
73 rdf:type schema:PropertyValue
74 Nad5d95ffa8f348f6ab9e275aaaa06cfa rdf:first sg:person.0677261727.31
75 rdf:rest Nec6d7f29aa87429bab1ccf6e1b7cf4fb
76 Nbb163890ae56410ea4be6e883b9e8dbd schema:name dimensions_id
77 schema:value pub.1000851199
78 rdf:type schema:PropertyValue
79 Nc1c4c9d2582b4dfb92c92bfd05c900f4 rdf:first sg:person.0645365043.40
80 rdf:rest N007be5dccb1d4c6ba1ea8daa7e72c74d
81 Nc22e22ba70c1493d8531e1bf5423c837 schema:name readcube_id
82 schema:value 040ddd874e7cd370c8c0c29bb3453b5703ab6136f20bd9ee79eeddb291acde0b
83 rdf:type schema:PropertyValue
84 Nec6d7f29aa87429bab1ccf6e1b7cf4fb rdf:first sg:person.0575401051.54
85 rdf:rest rdf:nil
86 Nf27533cff7a04fb2a92da3b453a584ab schema:issueNumber 2
87 rdf:type schema:PublicationIssue
88 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
89 schema:name Environmental Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
92 schema:name Soil Sciences
93 rdf:type schema:DefinedTerm
94 sg:journal.1136667 schema:issn 1385-1314
95 1573-0867
96 schema:name Nutrient Cycling in Agroecosystems
97 rdf:type schema:Periodical
98 sg:person.01162566526.52 schema:affiliation https://www.grid.ac/institutes/grid.410826.9
99 schema:familyName Eguchi
100 schema:givenName Sadao
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162566526.52
102 rdf:type schema:Person
103 sg:person.014017433372.69 schema:affiliation N56510551776a49808d5f68ed63599cdd
104 schema:familyName Tsuji
105 schema:givenName Masaki
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017433372.69
107 rdf:type schema:Person
108 sg:person.0575401051.54 schema:affiliation https://www.grid.ac/institutes/grid.410826.9
109 schema:familyName Katou
110 schema:givenName Hidetaka
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575401051.54
112 rdf:type schema:Person
113 sg:person.0645365043.40 schema:affiliation https://www.grid.ac/institutes/grid.410826.9
114 schema:familyName Asada
115 schema:givenName Kei
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645365043.40
117 rdf:type schema:Person
118 sg:person.0667637426.39 schema:affiliation N3376bb698580421dba35a607a709e852
119 schema:familyName Tsunekawa
120 schema:givenName Ayumi
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667637426.39
122 rdf:type schema:Person
123 sg:person.0677261727.31 schema:affiliation https://www.grid.ac/institutes/grid.410826.9
124 schema:familyName Itahashi
125 schema:givenName Sunao
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677261727.31
127 rdf:type schema:Person
128 sg:pub.10.1007/978-3-642-61094-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008699300
129 https://doi.org/10.1007/978-3-642-61094-3_17
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s003740100416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000602218
132 https://doi.org/10.1007/s003740100416
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00442-004-1519-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029021403
135 https://doi.org/10.1007/s00442-004-1519-1
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11104-013-1809-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027086175
138 https://doi.org/10.1007/s11104-013-1809-7
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1004452515423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038475440
141 https://doi.org/10.1023/a:1004452515423
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nclimate1951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043331772
144 https://doi.org/10.1038/nclimate1951
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ngeo608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051306123
147 https://doi.org/10.1038/ngeo608
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/jpln.200725102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047043215
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0167-8809(87)90099-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050155298
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.agee.2011.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023004443
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.agee.2011.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045786413
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.agwat.2009.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043095209
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.eja.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049050047
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.eja.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044551974
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.geoderma.2007.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017484066
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.soilbio.2008.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019787969
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.soilbio.2013.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030239398
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0038-0717(02)00083-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052571239
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0038-0717(97)00256-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048317190
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0269-7491(02)00233-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014002631
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1073/pnas.1012878108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047772519
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/00380768.2000.10409133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008235149
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1475-2743.1991.tb00853.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036915716
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1175/1520-0477(1982)063<1309:scoteo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033569790
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1201/9781420032635.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010373096
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2134/advagricsystmodel2.c1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349796
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2134/jeq2008.0277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069009974
188 rdf:type schema:CreativeWork
189 https://doi.org/10.2136/sssaj1980.03615995004400050002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069043312
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2480/agrmet.67.4.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037971421
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2965/jswe1978.8.486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051341606
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.410826.9 schema:alternateName National Institute for Agro-Environmental Sciences
196 schema:name National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, 305-8604, Tsukuba, Ibaraki, Japan
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...