Characterization of hydraulic fracture geometry in shale rocks through physical modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Weihong Wang, Kan Wu, Jon Olson

ABSTRACT

In unconventional shale reservoirs, the presence of natural fractures is common and widespread. Multi-stage hydraulic fracture treatments are used to generate complex fracture geometry and stimulate reservoirs to unlock hydrocarbon in unconventional reservoirs. Natural fractures further complicate the complexity of the fracture geometry. In this paper, the objective is to investigate the impact of natural fractures on multiple hydraulic fracture propagation using an in-house fracture propagation model. We have developed a complex hydraulic fracture model to simulate multiple fracture propagation in naturally fractured reservoirs. The model can calculate partitioning of fluid between multiple fractures, fracture interaction within a stage and between stages, as well as the interaction between hydraulic and natural fractures. For simultaneous multiple fracture propagation, the exterior fractures generally take the majority of fluid and propagate at the expense of the interior fractures. Natural fractures can retard the growth of hydraulic fractures and change the fluid distribution between fractures and propagation trajectories of hydraulic fractures. In a reservoir with a heterogeneous natural fracture distribution, the interruption of natural fractures can complicate fracture geometry. The higher density or smaller spacing of natural fractures can mitigate stress shadow effects and favor more fluid flowing into the inner fractures. Due to the uncertainty of natural fracture distribution, the reliability of the complex fracture geometry provided by numerical models has been challenged. This paper demonstrates the potential of incorporating diagnostic results to constrain numerical results. Through combining diagnostic results with the fracture model, the accuracy of predicted fracture geometry can be improved. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10704-019-00343-3

DOI

http://dx.doi.org/10.1007/s10704-019-00343-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111455777


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC Group, 100083, Beijing, China", 
            "Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, SINOPEC Group, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Weihong", 
        "id": "sg:person.016516334530.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516334530.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Petroleum Engineering, Texas A&M University, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Kan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olson", 
        "givenName": "Jon", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10704-015-0023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028049011", 
          "https://doi.org/10.1007/s10704-015-0023-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpetgeo.2012.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032621416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(94)00037-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036182322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-012-0359-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039563603", 
          "https://doi.org/10.1007/s00603-012-0359-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3656897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062136979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/03230908032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064920064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/08121413151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/11010606061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064925006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/12108-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068948565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/124884-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068948985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/158935-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068951452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/167626-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068952193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/172500-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068952677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/178925-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068953149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/aj06014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091294122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/166259-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096030694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/171632-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096036427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/171667-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096036446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/173363-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096119776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/115771-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096922594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/140253-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096923336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/168603-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096929501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/152602-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096932494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/119739-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096939830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/124919-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096941524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/77442-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096953119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/71649-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096953878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/140480-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096961640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/140514-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096961641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/15261-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096972740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/106289-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096974951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/152052-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096979885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/163982-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096980682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/136565-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096983424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/urtec2013-025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099004500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpetgeo.2018.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107256414"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In unconventional shale reservoirs, the presence of natural fractures is common and widespread. Multi-stage hydraulic fracture treatments are used to generate complex fracture geometry and stimulate reservoirs to unlock hydrocarbon in unconventional reservoirs. Natural fractures further complicate the complexity of the fracture geometry. In this paper, the objective is to investigate the impact of natural fractures on multiple hydraulic fracture propagation using an in-house fracture propagation model. We have developed a complex hydraulic fracture model to simulate multiple fracture propagation in naturally fractured reservoirs. The model can calculate partitioning of fluid between multiple fractures, fracture interaction within a stage and between stages, as well as the interaction between hydraulic and natural fractures. For simultaneous multiple fracture propagation, the exterior fractures generally take the majority of fluid and propagate at the expense of the interior fractures. Natural fractures can retard the growth of hydraulic fractures and change the fluid distribution between fractures and propagation trajectories of hydraulic fractures. In a reservoir with a heterogeneous natural fracture distribution, the interruption of natural fractures can complicate fracture geometry. The higher density or smaller spacing of natural fractures can mitigate stress shadow effects and favor more fluid flowing into the inner fractures. Due to the uncertainty of natural fracture distribution, the reliability of the complex fracture geometry provided by numerical models has been challenged. This paper demonstrates the potential of incorporating diagnostic results to constrain numerical results. Through combining diagnostic results with the fracture model, the accuracy of predicted fracture geometry can be improved.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10704-019-00343-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124104", 
        "issn": [
          "0376-9429", 
          "1573-2673"
        ], 
        "name": "International Journal of Fracture", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "216"
      }
    ], 
    "name": "Characterization of hydraulic fracture geometry in shale rocks through physical modeling", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a4feb4ee0be939e59db8d562e6510597c13fea8c8fc5c4f8fd9fb29dfcf60ad"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10704-019-00343-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111455777"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10704-019-00343-3", 
      "https://app.dimensions.ai/details/publication/pub.1111455777"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117109_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10704-019-00343-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10704-019-00343-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10704-019-00343-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10704-019-00343-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10704-019-00343-3'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10704-019-00343-3 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N88cff0cc87bc435593aa0e59207e229e
4 schema:citation sg:pub.10.1007/s00603-012-0359-2
5 sg:pub.10.1007/s10704-015-0023-4
6 https://doi.org/10.1016/0148-9062(94)00037-4
7 https://doi.org/10.1016/j.marpetgeo.2012.01.010
8 https://doi.org/10.1016/j.marpetgeo.2018.09.028
9 https://doi.org/10.1071/aj06014
10 https://doi.org/10.1115/1.3656897
11 https://doi.org/10.1190/urtec2013-025
12 https://doi.org/10.1306/03230908032
13 https://doi.org/10.1306/08121413151
14 https://doi.org/10.1306/11010606061
15 https://doi.org/10.2118/106289-ms
16 https://doi.org/10.2118/115771-ms
17 https://doi.org/10.2118/119739-ms
18 https://doi.org/10.2118/12108-pa
19 https://doi.org/10.2118/124884-pa
20 https://doi.org/10.2118/124919-ms
21 https://doi.org/10.2118/136565-ms
22 https://doi.org/10.2118/140253-ms
23 https://doi.org/10.2118/140480-ms
24 https://doi.org/10.2118/140514-ms
25 https://doi.org/10.2118/152052-ms
26 https://doi.org/10.2118/152602-ms
27 https://doi.org/10.2118/15261-ms
28 https://doi.org/10.2118/158935-pa
29 https://doi.org/10.2118/163982-ms
30 https://doi.org/10.2118/166259-ms
31 https://doi.org/10.2118/167626-pa
32 https://doi.org/10.2118/168603-ms
33 https://doi.org/10.2118/171632-ms
34 https://doi.org/10.2118/171667-ms
35 https://doi.org/10.2118/172500-pa
36 https://doi.org/10.2118/173363-ms
37 https://doi.org/10.2118/178925-pa
38 https://doi.org/10.2118/71649-ms
39 https://doi.org/10.2118/77442-ms
40 schema:datePublished 2019-03
41 schema:datePublishedReg 2019-03-01
42 schema:description In unconventional shale reservoirs, the presence of natural fractures is common and widespread. Multi-stage hydraulic fracture treatments are used to generate complex fracture geometry and stimulate reservoirs to unlock hydrocarbon in unconventional reservoirs. Natural fractures further complicate the complexity of the fracture geometry. In this paper, the objective is to investigate the impact of natural fractures on multiple hydraulic fracture propagation using an in-house fracture propagation model. We have developed a complex hydraulic fracture model to simulate multiple fracture propagation in naturally fractured reservoirs. The model can calculate partitioning of fluid between multiple fractures, fracture interaction within a stage and between stages, as well as the interaction between hydraulic and natural fractures. For simultaneous multiple fracture propagation, the exterior fractures generally take the majority of fluid and propagate at the expense of the interior fractures. Natural fractures can retard the growth of hydraulic fractures and change the fluid distribution between fractures and propagation trajectories of hydraulic fractures. In a reservoir with a heterogeneous natural fracture distribution, the interruption of natural fractures can complicate fracture geometry. The higher density or smaller spacing of natural fractures can mitigate stress shadow effects and favor more fluid flowing into the inner fractures. Due to the uncertainty of natural fracture distribution, the reliability of the complex fracture geometry provided by numerical models has been challenged. This paper demonstrates the potential of incorporating diagnostic results to constrain numerical results. Through combining diagnostic results with the fracture model, the accuracy of predicted fracture geometry can be improved.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N25936ac2ab504be6b321e2a1577c335d
47 N7faea70b1a0e4adcbdbdfdcac21c0de9
48 sg:journal.1124104
49 schema:name Characterization of hydraulic fracture geometry in shale rocks through physical modeling
50 schema:pagination 1-15
51 schema:productId N301c28acebff40508da8db7615aa39c1
52 N943fc84e74de4dd5b6bb40a37f9cc4a2
53 Na8609cb7f4f1433ea346f9f622f06e62
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111455777
55 https://doi.org/10.1007/s10704-019-00343-3
56 schema:sdDatePublished 2019-04-11T14:19
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N69d1408efd6c4eadb01af4b58e02b123
59 schema:url https://link.springer.com/10.1007%2Fs10704-019-00343-3
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N043e1e10a2bb486abc4126adee18dd90 rdf:first N8eb9ee426edd4ea58fe6c761c22cb1ba
64 rdf:rest rdf:nil
65 N25936ac2ab504be6b321e2a1577c335d schema:volumeNumber 216
66 rdf:type schema:PublicationVolume
67 N301c28acebff40508da8db7615aa39c1 schema:name doi
68 schema:value 10.1007/s10704-019-00343-3
69 rdf:type schema:PropertyValue
70 N69d1408efd6c4eadb01af4b58e02b123 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N7faea70b1a0e4adcbdbdfdcac21c0de9 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N88cff0cc87bc435593aa0e59207e229e rdf:first sg:person.016516334530.57
75 rdf:rest Ne8f418c73b6147a2a9f34acf2f1717e4
76 N8eb9ee426edd4ea58fe6c761c22cb1ba schema:affiliation https://www.grid.ac/institutes/grid.89336.37
77 schema:familyName Olson
78 schema:givenName Jon
79 rdf:type schema:Person
80 N943fc84e74de4dd5b6bb40a37f9cc4a2 schema:name dimensions_id
81 schema:value pub.1111455777
82 rdf:type schema:PropertyValue
83 Na8609cb7f4f1433ea346f9f622f06e62 schema:name readcube_id
84 schema:value 5a4feb4ee0be939e59db8d562e6510597c13fea8c8fc5c4f8fd9fb29dfcf60ad
85 rdf:type schema:PropertyValue
86 Nc278b6f6167f4516a9f779991901bff8 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
87 schema:familyName Wu
88 schema:givenName Kan
89 rdf:type schema:Person
90 Ne8f418c73b6147a2a9f34acf2f1717e4 rdf:first Nc278b6f6167f4516a9f779991901bff8
91 rdf:rest N043e1e10a2bb486abc4126adee18dd90
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
96 schema:name Clinical Sciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1124104 schema:issn 0376-9429
99 1573-2673
100 schema:name International Journal of Fracture
101 rdf:type schema:Periodical
102 sg:person.016516334530.57 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
103 schema:familyName Wang
104 schema:givenName Weihong
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516334530.57
106 rdf:type schema:Person
107 sg:pub.10.1007/s00603-012-0359-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039563603
108 https://doi.org/10.1007/s00603-012-0359-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10704-015-0023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028049011
111 https://doi.org/10.1007/s10704-015-0023-4
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0148-9062(94)00037-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036182322
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.marpetgeo.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032621416
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.marpetgeo.2018.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107256414
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1071/aj06014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091294122
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1115/1.3656897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062136979
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1190/urtec2013-025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099004500
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1306/03230908032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064920064
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1306/08121413151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922702
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1306/11010606061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064925006
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2118/106289-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096974951
132 rdf:type schema:CreativeWork
133 https://doi.org/10.2118/115771-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096922594
134 rdf:type schema:CreativeWork
135 https://doi.org/10.2118/119739-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096939830
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2118/12108-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068948565
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2118/124884-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068948985
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2118/124919-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096941524
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2118/136565-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096983424
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2118/140253-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096923336
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2118/140480-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096961640
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2118/140514-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096961641
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2118/152052-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096979885
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2118/152602-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096932494
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2118/15261-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096972740
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2118/158935-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068951452
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2118/163982-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096980682
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2118/166259-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096030694
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2118/167626-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068952193
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2118/168603-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096929501
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2118/171632-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096036427
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2118/171667-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096036446
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2118/172500-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068952677
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2118/173363-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096119776
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2118/178925-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068953149
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2118/71649-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096953878
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2118/77442-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096953119
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
182 schema:name Department of Petroleum Engineering, Texas A&M University, 77843, College Station, TX, USA
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.418531.a schema:alternateName Sinopec (China)
185 schema:name Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, SINOPEC Group, 100083, Beijing, China
186 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC Group, 100083, Beijing, China
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
189 schema:name Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, 78712, Austin, TX, USA
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...