Rate and microstructure influence on the fracture behavior of cemented carbides WC-Co and WC-Ni View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-02

AUTHORS

P. Jewell, L. Shannahan, S. Pagano, R. DeMott, M. Taheri, L. Lamberson

ABSTRACT

Tungsten carbide has both industrial and military applications, from high strength end mill dies and geological drilling, to kinetic energy penetrators. In these extreme environments, an understanding of the dynamic fracture properties and the potential influence of grade microstructure is necessary. The present work investigates fracture behavior of cobalt and nickel cemented tungsten carbide with varying grain size and binder content. Notched hardmetal WC-Co and WC-Ni samples are impacted under mode-I (opening) fracture conditions, and the dynamic stress intensity factor is determined from digital image correlation using ultra high-speed imaging, and compared with quasi-static values. In both grain size and binder content variants examined, the dynamic fracture toughness increased from the quasi-static by a factor of 1.51–2.44. In addition, a 7% increase in cobalt binder content (while maintaining nominally identical average grain size) resulted in a 20% increase in quasi-static fracture toughness, from 8.62 to 10.38 MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\text {m}}$$\end{document}; while the same binder increase resulted in a 34% decrease in critical SIF from 21.07 to 15.72 MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\text {m}}$$\end{document}. The 6% nickel binder WC was found to have a 4.5% higher quasi-static fracture toughness than the 6% cobalt binder WC of the same grain size, but a statistically insignificant difference under dynamic loading. Overall, there is a 28% increase in the quasi-static fracture toughness of tungsten carbide samples with an increase of average grain size from 1 to 3 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}m, and under dynamic loading the larger grain WC shows a nominally identical increase in fracture toughness. These findings are discussed within the theory of classical dynamic fracture mechanics, the implications of the experimental configurations pursued, and the microstructural features are examined using fractography. More... »

PAGES

203-219

References to SciGraph publications

  • 1965-09. On cracks in rectilinearly anisotropic bodies in INTERNATIONAL JOURNAL OF FRACTURE
  • 1997-09. Dynamic fracture characteristics of highly brittle materials by using Instrumented Charpy Impact Test in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • 1985-12. Binder deformation in WC-(Co, Ni) cemented carbide composites in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1976-10. Fracture toughness and fracture of WC-Co composites in JOURNAL OF MATERIALS SCIENCE
  • 2002-09. On testing of charpy specimens using the one-point bend impact technique in EXPERIMENTAL MECHANICS
  • 2001-11. Dynamic fracture of tungsten base heavy alloys in INTERNATIONAL JOURNAL OF FRACTURE
  • 1991-01-01. Fracture toughness measurement with fatigue-precracked single edge-notched beam specimens of WC-Co hard metal in JOURNAL OF MATERIALS SCIENCE
  • 1974. Determination of Fracture Toughness Parameters for Tungsten Carbide-Cobalt Alloys in FRACTURE MECHANICS OF CERAMICS
  • 2015-08-22. Rate-dependent fracture modes in human femoral cortical bone in INTERNATIONAL JOURNAL OF FRACTURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10704-017-0237-8

    DOI

    http://dx.doi.org/10.1007/s10704-017-0237-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090948569


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Drexel University, 19106, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Drexel University, 19106, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jewell", 
            "givenName": "P.", 
            "id": "sg:person.010353776476.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353776476.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Drexel University, 19106, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Drexel University, 19106, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shannahan", 
            "givenName": "L.", 
            "id": "sg:person.014333276415.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333276415.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Drexel University, 19106, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Drexel University, 19106, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pagano", 
            "givenName": "S.", 
            "id": "sg:person.012363312423.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012363312423.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Drexel University, 19106, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Drexel University, 19106, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DeMott", 
            "givenName": "R.", 
            "id": "sg:person.010446433761.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010446433761.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Drexel University, 19106, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Drexel University, 19106, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taheri", 
            "givenName": "M.", 
            "id": "sg:person.011043477467.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043477467.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Drexel University, 19106, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Drexel University, 19106, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lamberson", 
            "givenName": "L.", 
            "id": "sg:person.0672762113.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672762113.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4615-7014-1_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034456594", 
              "https://doi.org/10.1007/978-1-4615-7014-1_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013581609836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000488526", 
              "https://doi.org/10.1023/a:1013581609836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02945263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049177873", 
              "https://doi.org/10.1007/bf02945263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02410979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053025544", 
              "https://doi.org/10.1007/bf02410979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10704-015-0035-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046389493", 
              "https://doi.org/10.1007/s10704-015-0035-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00543657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036073363", 
              "https://doi.org/10.1007/bf00543657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00708272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018165840", 
              "https://doi.org/10.1007/bf00708272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00186854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046164499", 
              "https://doi.org/10.1007/bf00186854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02670431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028402695", 
              "https://doi.org/10.1007/bf02670431"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-02", 
        "datePublishedReg": "2017-08-02", 
        "description": "Tungsten carbide has both industrial and military applications, from high strength end mill dies and geological drilling, to kinetic energy penetrators. In these extreme environments, an understanding of the dynamic fracture properties and the potential influence of grade microstructure is necessary. The present work investigates fracture behavior of cobalt and nickel cemented tungsten carbide with varying grain size and binder content. Notched hardmetal WC-Co and WC-Ni samples are impacted under mode-I (opening) fracture conditions, and the dynamic stress intensity factor is determined from digital image correlation using ultra high-speed imaging, and compared with quasi-static values. In both grain size and binder content variants examined, the dynamic fracture toughness increased from the quasi-static by a factor of 1.51\u20132.44. In addition, a 7% increase in cobalt binder content (while maintaining nominally identical average grain size) resulted in a 20% increase in quasi-static fracture toughness, from 8.62 to 10.38\u00a0MPam\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sqrt{\\text {m}}$$\\end{document}; while the same binder increase resulted in a 34% decrease in critical SIF from 21.07 to 15.72\u00a0MPam\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sqrt{\\text {m}}$$\\end{document}. The 6% nickel binder WC was found to have a 4.5% higher quasi-static fracture toughness than the 6% cobalt binder WC of the same grain size, but a statistically insignificant difference under dynamic loading. Overall, there is a 28% increase in the quasi-static fracture toughness of tungsten carbide samples with an increase of average grain size from 1 to 3\u00a0\u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\upmu $$\\end{document}m, and under dynamic loading the larger grain WC shows a nominally identical increase in fracture toughness. These findings are discussed within the theory of classical dynamic fracture mechanics, the implications of the experimental configurations pursued, and the microstructural features are examined using fractography.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10704-017-0237-8", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1124104", 
            "issn": [
              "0376-9429", 
              "1573-2673"
            ], 
            "name": "International Journal of Fracture", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "208"
          }
        ], 
        "keywords": [
          "quasi-static fracture toughness", 
          "fracture toughness", 
          "grain size", 
          "fracture behavior", 
          "WC-Co", 
          "binder content", 
          "dynamic stress intensity factor", 
          "ultra-high speed imaging", 
          "dynamic fracture properties", 
          "dynamic fracture toughness", 
          "dynamic fracture mechanics", 
          "digital image correlation", 
          "quasi-static values", 
          "stress intensity factor", 
          "average grain size", 
          "high-speed imaging", 
          "carbides WC\u2013Co", 
          "kinetic energy penetrators", 
          "same grain size", 
          "WC-Ni", 
          "tungsten carbide samples", 
          "fracture mechanics", 
          "microstructure influence", 
          "fracture properties", 
          "critical SIF", 
          "dynamic loading", 
          "fracture conditions", 
          "binder increases", 
          "tungsten carbide", 
          "image correlation", 
          "microstructural features", 
          "intensity factors", 
          "toughness", 
          "carbide samples", 
          "experimental configuration", 
          "military applications", 
          "geological drilling", 
          "WC", 
          "present work", 
          "fractography", 
          "carbide", 
          "microstructure", 
          "extreme environments", 
          "loading", 
          "penetrator", 
          "drilling", 
          "tungsten", 
          "dies", 
          "size", 
          "nickel", 
          "behavior", 
          "SIF", 
          "influence", 
          "mechanics", 
          "configuration", 
          "cobalt", 
          "properties", 
          "increase", 
          "applications", 
          "content", 
          "conditions", 
          "work", 
          "samples", 
          "environment", 
          "values", 
          "addition", 
          "insignificant difference", 
          "rate", 
          "decrease", 
          "features", 
          "theory", 
          "factors", 
          "imaging", 
          "correlation", 
          "understanding", 
          "potential influence", 
          "differences", 
          "variants", 
          "implications", 
          "findings", 
          "identical increase"
        ], 
        "name": "Rate and microstructure influence on the fracture behavior of cemented carbides WC-Co and WC-Ni", 
        "pagination": "203-219", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090948569"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10704-017-0237-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10704-017-0237-8", 
          "https://app.dimensions.ai/details/publication/pub.1090948569"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_722.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10704-017-0237-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10704-017-0237-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10704-017-0237-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10704-017-0237-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10704-017-0237-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      21 PREDICATES      114 URIs      97 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10704-017-0237-8 schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author N25f4f0d4f5464c878a5a89396763b68a
    4 schema:citation sg:pub.10.1007/978-1-4615-7014-1_22
    5 sg:pub.10.1007/bf00186854
    6 sg:pub.10.1007/bf00543657
    7 sg:pub.10.1007/bf00708272
    8 sg:pub.10.1007/bf02410979
    9 sg:pub.10.1007/bf02670431
    10 sg:pub.10.1007/bf02945263
    11 sg:pub.10.1007/s10704-015-0035-0
    12 sg:pub.10.1023/a:1013581609836
    13 schema:datePublished 2017-08-02
    14 schema:datePublishedReg 2017-08-02
    15 schema:description Tungsten carbide has both industrial and military applications, from high strength end mill dies and geological drilling, to kinetic energy penetrators. In these extreme environments, an understanding of the dynamic fracture properties and the potential influence of grade microstructure is necessary. The present work investigates fracture behavior of cobalt and nickel cemented tungsten carbide with varying grain size and binder content. Notched hardmetal WC-Co and WC-Ni samples are impacted under mode-I (opening) fracture conditions, and the dynamic stress intensity factor is determined from digital image correlation using ultra high-speed imaging, and compared with quasi-static values. In both grain size and binder content variants examined, the dynamic fracture toughness increased from the quasi-static by a factor of 1.51–2.44. In addition, a 7% increase in cobalt binder content (while maintaining nominally identical average grain size) resulted in a 20% increase in quasi-static fracture toughness, from 8.62 to 10.38 MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\text {m}}$$\end{document}; while the same binder increase resulted in a 34% decrease in critical SIF from 21.07 to 15.72 MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\text {m}}$$\end{document}. The 6% nickel binder WC was found to have a 4.5% higher quasi-static fracture toughness than the 6% cobalt binder WC of the same grain size, but a statistically insignificant difference under dynamic loading. Overall, there is a 28% increase in the quasi-static fracture toughness of tungsten carbide samples with an increase of average grain size from 1 to 3 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}m, and under dynamic loading the larger grain WC shows a nominally identical increase in fracture toughness. These findings are discussed within the theory of classical dynamic fracture mechanics, the implications of the experimental configurations pursued, and the microstructural features are examined using fractography.
    16 schema:genre article
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N59246767c7de46caa970ed5758cc1578
    19 N595b7b4683ae495f9c3bbca1e10c0529
    20 sg:journal.1124104
    21 schema:keywords SIF
    22 WC
    23 WC-Co
    24 WC-Ni
    25 addition
    26 applications
    27 average grain size
    28 behavior
    29 binder content
    30 binder increases
    31 carbide
    32 carbide samples
    33 carbides WC–Co
    34 cobalt
    35 conditions
    36 configuration
    37 content
    38 correlation
    39 critical SIF
    40 decrease
    41 dies
    42 differences
    43 digital image correlation
    44 drilling
    45 dynamic fracture mechanics
    46 dynamic fracture properties
    47 dynamic fracture toughness
    48 dynamic loading
    49 dynamic stress intensity factor
    50 environment
    51 experimental configuration
    52 extreme environments
    53 factors
    54 features
    55 findings
    56 fractography
    57 fracture behavior
    58 fracture conditions
    59 fracture mechanics
    60 fracture properties
    61 fracture toughness
    62 geological drilling
    63 grain size
    64 high-speed imaging
    65 identical increase
    66 image correlation
    67 imaging
    68 implications
    69 increase
    70 influence
    71 insignificant difference
    72 intensity factors
    73 kinetic energy penetrators
    74 loading
    75 mechanics
    76 microstructural features
    77 microstructure
    78 microstructure influence
    79 military applications
    80 nickel
    81 penetrator
    82 potential influence
    83 present work
    84 properties
    85 quasi-static fracture toughness
    86 quasi-static values
    87 rate
    88 same grain size
    89 samples
    90 size
    91 stress intensity factor
    92 theory
    93 toughness
    94 tungsten
    95 tungsten carbide
    96 tungsten carbide samples
    97 ultra-high speed imaging
    98 understanding
    99 values
    100 variants
    101 work
    102 schema:name Rate and microstructure influence on the fracture behavior of cemented carbides WC-Co and WC-Ni
    103 schema:pagination 203-219
    104 schema:productId N95506e09e93945a0b2d68889d0cb8e0e
    105 Ne78be17a2fee47929f04cd1eb2e4400a
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090948569
    107 https://doi.org/10.1007/s10704-017-0237-8
    108 schema:sdDatePublished 2022-12-01T06:35
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N9ebbc5543c854aa3a0944819e596f5bf
    111 schema:url https://doi.org/10.1007/s10704-017-0237-8
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N25f4f0d4f5464c878a5a89396763b68a rdf:first sg:person.010353776476.65
    116 rdf:rest N6c2e87a2c1d1476c80b3d73d592c4a07
    117 N334a129b1ee9424ba2bda568cc358455 rdf:first sg:person.010446433761.74
    118 rdf:rest N6655d3b83ea7490d99e2d7d2f90240d7
    119 N59246767c7de46caa970ed5758cc1578 schema:issueNumber 1-2
    120 rdf:type schema:PublicationIssue
    121 N595b7b4683ae495f9c3bbca1e10c0529 schema:volumeNumber 208
    122 rdf:type schema:PublicationVolume
    123 N6655d3b83ea7490d99e2d7d2f90240d7 rdf:first sg:person.011043477467.43
    124 rdf:rest N9eb2199dea8148e8b9b7de9b5336cb91
    125 N6c2e87a2c1d1476c80b3d73d592c4a07 rdf:first sg:person.014333276415.45
    126 rdf:rest N8018762523b746949ec70f625e121dea
    127 N8018762523b746949ec70f625e121dea rdf:first sg:person.012363312423.67
    128 rdf:rest N334a129b1ee9424ba2bda568cc358455
    129 N95506e09e93945a0b2d68889d0cb8e0e schema:name dimensions_id
    130 schema:value pub.1090948569
    131 rdf:type schema:PropertyValue
    132 N9eb2199dea8148e8b9b7de9b5336cb91 rdf:first sg:person.0672762113.99
    133 rdf:rest rdf:nil
    134 N9ebbc5543c854aa3a0944819e596f5bf schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 Ne78be17a2fee47929f04cd1eb2e4400a schema:name doi
    137 schema:value 10.1007/s10704-017-0237-8
    138 rdf:type schema:PropertyValue
    139 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Engineering
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Resources Engineering and Extractive Metallurgy
    144 rdf:type schema:DefinedTerm
    145 sg:journal.1124104 schema:issn 0376-9429
    146 1573-2673
    147 schema:name International Journal of Fracture
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.010353776476.65 schema:affiliation grid-institutes:grid.166341.7
    151 schema:familyName Jewell
    152 schema:givenName P.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353776476.65
    154 rdf:type schema:Person
    155 sg:person.010446433761.74 schema:affiliation grid-institutes:grid.166341.7
    156 schema:familyName DeMott
    157 schema:givenName R.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010446433761.74
    159 rdf:type schema:Person
    160 sg:person.011043477467.43 schema:affiliation grid-institutes:grid.166341.7
    161 schema:familyName Taheri
    162 schema:givenName M.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043477467.43
    164 rdf:type schema:Person
    165 sg:person.012363312423.67 schema:affiliation grid-institutes:grid.166341.7
    166 schema:familyName Pagano
    167 schema:givenName S.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012363312423.67
    169 rdf:type schema:Person
    170 sg:person.014333276415.45 schema:affiliation grid-institutes:grid.166341.7
    171 schema:familyName Shannahan
    172 schema:givenName L.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333276415.45
    174 rdf:type schema:Person
    175 sg:person.0672762113.99 schema:affiliation grid-institutes:grid.166341.7
    176 schema:familyName Lamberson
    177 schema:givenName L.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672762113.99
    179 rdf:type schema:Person
    180 sg:pub.10.1007/978-1-4615-7014-1_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034456594
    181 https://doi.org/10.1007/978-1-4615-7014-1_22
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf00186854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046164499
    184 https://doi.org/10.1007/bf00186854
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/bf00543657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036073363
    187 https://doi.org/10.1007/bf00543657
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf00708272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018165840
    190 https://doi.org/10.1007/bf00708272
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf02410979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053025544
    193 https://doi.org/10.1007/bf02410979
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bf02670431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028402695
    196 https://doi.org/10.1007/bf02670431
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bf02945263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049177873
    199 https://doi.org/10.1007/bf02945263
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s10704-015-0035-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046389493
    202 https://doi.org/10.1007/s10704-015-0035-0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1023/a:1013581609836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000488526
    205 https://doi.org/10.1023/a:1013581609836
    206 rdf:type schema:CreativeWork
    207 grid-institutes:grid.166341.7 schema:alternateName Drexel University, 19106, Philadelphia, PA, USA
    208 schema:name Drexel University, 19106, Philadelphia, PA, USA
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...