General size effect on strength of bimaterial quasibrittle structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12-13

AUTHORS

Jia-Liang Le

ABSTRACT

This paper presents a general size effect equation for the strength of hybrid structures, which are made of two dissimilar quasibrittle materials with a thin and weak bimaterial interface. Depending on the material mismatch and structure geometry, a singular stress field could occur at the bimaterial corner. For structures with strong stress singularities, an energetic size effect is derived based on the equivalent linear elastic fracture mechanics and asymptotic matching. For structures without stress singularities, a finite weakest link model is adopted to derive the size effect. A general scaling equation that bridges the limits of strong and zero stress singularities is formulated by combining the energetic scaling of fracture of the bimaterial corner and the finite weakest link model. More... »

PAGES

151-160

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10704-011-9653-3

DOI

http://dx.doi.org/10.1007/s10704-011-9653-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004766652


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le", 
        "givenName": "Jia-Liang", 
        "id": "sg:person.016161072730.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161072730.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00047063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032624498", 
          "https://doi.org/10.1007/bf00047063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010820216816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004393711", 
          "https://doi.org/10.1023/a:1010820216816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02387802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007363401", 
          "https://doi.org/10.1007/bf02387802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007387823522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042965833", 
          "https://doi.org/10.1023/a:1007387823522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00687277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041694467", 
          "https://doi.org/10.1007/bf00687277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018635914556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051299967", 
          "https://doi.org/10.1023/a:1018635914556"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-13", 
    "datePublishedReg": "2011-12-13", 
    "description": "This paper presents a general size effect equation for the strength of hybrid structures, which are made of two dissimilar quasibrittle materials with a thin and weak bimaterial interface. Depending on the material mismatch and structure geometry, a singular stress field could occur at the bimaterial corner. For structures with strong stress singularities, an energetic size effect is derived based on the equivalent linear elastic fracture mechanics and asymptotic matching. For structures without stress singularities, a finite weakest link model is adopted to derive the size effect. A general scaling equation that bridges the limits of strong and zero stress singularities is formulated by combining the energetic scaling of fracture of the bimaterial corner and the finite weakest link model.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10704-011-9653-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124104", 
        "issn": [
          "0376-9429", 
          "1573-2673"
        ], 
        "name": "International Journal of Fracture", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "172"
      }
    ], 
    "keywords": [
      "finite weakest link model", 
      "weakest link model", 
      "bimaterial corners", 
      "stress singularity", 
      "linear elastic fracture mechanics", 
      "equivalent linear elastic fracture mechanics", 
      "elastic fracture mechanics", 
      "singular stress field", 
      "size effect", 
      "strong stress singularity", 
      "energetic size effect", 
      "fracture mechanics", 
      "material mismatch", 
      "quasibrittle structures", 
      "quasibrittle materials", 
      "bimaterial interface", 
      "stress field", 
      "general size effect", 
      "hybrid structure", 
      "energetic scaling", 
      "structure geometry", 
      "link model", 
      "asymptotic matching", 
      "strength", 
      "effect equation", 
      "corner", 
      "equations", 
      "structure", 
      "interface", 
      "materials", 
      "mechanics", 
      "geometry", 
      "model", 
      "fractures", 
      "stress", 
      "mismatch", 
      "field", 
      "effect", 
      "singularity", 
      "scaling", 
      "limit", 
      "matching", 
      "paper", 
      "general size effect equation", 
      "size effect equation", 
      "dissimilar quasibrittle materials", 
      "weak bimaterial interface", 
      "bimaterial quasibrittle structures"
    ], 
    "name": "General size effect on strength of bimaterial quasibrittle structures", 
    "pagination": "151-160", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004766652"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10704-011-9653-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10704-011-9653-3", 
      "https://app.dimensions.ai/details/publication/pub.1004766652"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10704-011-9653-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10704-011-9653-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10704-011-9653-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10704-011-9653-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10704-011-9653-3'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      79 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10704-011-9653-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Naeca25b9af5e4790aa0ac9884dac0773
4 schema:citation sg:pub.10.1007/bf00047063
5 sg:pub.10.1007/bf00687277
6 sg:pub.10.1007/bf02387802
7 sg:pub.10.1023/a:1007387823522
8 sg:pub.10.1023/a:1010820216816
9 sg:pub.10.1023/a:1018635914556
10 schema:datePublished 2011-12-13
11 schema:datePublishedReg 2011-12-13
12 schema:description This paper presents a general size effect equation for the strength of hybrid structures, which are made of two dissimilar quasibrittle materials with a thin and weak bimaterial interface. Depending on the material mismatch and structure geometry, a singular stress field could occur at the bimaterial corner. For structures with strong stress singularities, an energetic size effect is derived based on the equivalent linear elastic fracture mechanics and asymptotic matching. For structures without stress singularities, a finite weakest link model is adopted to derive the size effect. A general scaling equation that bridges the limits of strong and zero stress singularities is formulated by combining the energetic scaling of fracture of the bimaterial corner and the finite weakest link model.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nc9d587bd3fe9433e8de36de7e7290d78
17 Ncec18dd64a5d4feb9c52f47484bac909
18 sg:journal.1124104
19 schema:keywords asymptotic matching
20 bimaterial corners
21 bimaterial interface
22 bimaterial quasibrittle structures
23 corner
24 dissimilar quasibrittle materials
25 effect
26 effect equation
27 elastic fracture mechanics
28 energetic scaling
29 energetic size effect
30 equations
31 equivalent linear elastic fracture mechanics
32 field
33 finite weakest link model
34 fracture mechanics
35 fractures
36 general size effect
37 general size effect equation
38 geometry
39 hybrid structure
40 interface
41 limit
42 linear elastic fracture mechanics
43 link model
44 matching
45 material mismatch
46 materials
47 mechanics
48 mismatch
49 model
50 paper
51 quasibrittle materials
52 quasibrittle structures
53 scaling
54 singular stress field
55 singularity
56 size effect
57 size effect equation
58 strength
59 stress
60 stress field
61 stress singularity
62 strong stress singularity
63 structure
64 structure geometry
65 weak bimaterial interface
66 weakest link model
67 schema:name General size effect on strength of bimaterial quasibrittle structures
68 schema:pagination 151-160
69 schema:productId N0f99b3f1cccb4021bc42e1e45af596f7
70 Na71f8137afb6430db117cdbabda6b08a
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004766652
72 https://doi.org/10.1007/s10704-011-9653-3
73 schema:sdDatePublished 2021-12-01T19:25
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Ndb61cec4e1324a0293e0d6c11a061d50
76 schema:url https://doi.org/10.1007/s10704-011-9653-3
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0f99b3f1cccb4021bc42e1e45af596f7 schema:name doi
81 schema:value 10.1007/s10704-011-9653-3
82 rdf:type schema:PropertyValue
83 Na71f8137afb6430db117cdbabda6b08a schema:name dimensions_id
84 schema:value pub.1004766652
85 rdf:type schema:PropertyValue
86 Naeca25b9af5e4790aa0ac9884dac0773 rdf:first sg:person.016161072730.30
87 rdf:rest rdf:nil
88 Nc9d587bd3fe9433e8de36de7e7290d78 schema:issueNumber 2
89 rdf:type schema:PublicationIssue
90 Ncec18dd64a5d4feb9c52f47484bac909 schema:volumeNumber 172
91 rdf:type schema:PublicationVolume
92 Ndb61cec4e1324a0293e0d6c11a061d50 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
98 schema:name Materials Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1124104 schema:issn 0376-9429
101 1573-2673
102 schema:name International Journal of Fracture
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.016161072730.30 schema:affiliation grid-institutes:grid.17635.36
106 schema:familyName Le
107 schema:givenName Jia-Liang
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161072730.30
109 rdf:type schema:Person
110 sg:pub.10.1007/bf00047063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032624498
111 https://doi.org/10.1007/bf00047063
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf00687277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041694467
114 https://doi.org/10.1007/bf00687277
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf02387802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007363401
117 https://doi.org/10.1007/bf02387802
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1007387823522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042965833
120 https://doi.org/10.1023/a:1007387823522
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1010820216816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004393711
123 https://doi.org/10.1023/a:1010820216816
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1018635914556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051299967
126 https://doi.org/10.1023/a:1018635914556
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.17635.36 schema:alternateName Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., 55455, Minneapolis, MN, USA
129 schema:name Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., 55455, Minneapolis, MN, USA
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...