Three-Space from Quantum Mechanics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-05

AUTHORS

László B. Szabados

ABSTRACT

The spin geometry theorem of Penrose is extended from SU(2) to E(3) (Euclidean) invariant elementary quantum mechanical systems. Using the natural decomposition of the total angular momentum into its spin and orbital parts, the distance between the centre-of-mass lines of the elementary subsystems of a classical composite system can be recovered from their relative orbital angular momenta by E(3)-invariant classical observables. Motivated by this observation, an expression for the ‘empirical distance’ between the elementary subsystems of a composite quantum mechanical system, given in terms of E(3)-invariant quantum observables, is suggested. It is shown that, in the classical limit, this expression reproduces the a priori Euclidean distance between the subsystems, though at the quantum level it has a discrete character. ‘Empirical’ angles and 3-volume elements are also considered. More... »

PAGES

102

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10701-022-00617-2

DOI

http://dx.doi.org/10.1007/s10701-022-00617-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150763359


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wigner Research Centre for Physics, 114, P. O. Box 49, 1525, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.419766.b", 
          "name": [
            "Wigner Research Centre for Physics, 114, P. O. Box 49, 1525, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szabados", 
        "givenName": "L\u00e1szl\u00f3 B.", 
        "id": "sg:person.07646132545.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646132545.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10701-022-00616-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1150428971", 
          "https://doi.org/10.1007/s10701-022-00616-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-05", 
    "datePublishedReg": "2022-09-05", 
    "description": "The spin geometry theorem of Penrose is extended from SU(2) to E(3) (Euclidean) invariant elementary quantum mechanical systems. Using the natural decomposition of the total angular momentum into its spin and orbital parts, the distance between the centre-of-mass lines of the elementary subsystems of a classical composite system can be recovered from their relative orbital angular momenta by E(3)-invariant classical observables. Motivated by this observation, an expression for the \u2018empirical distance\u2019 between the elementary subsystems of a composite quantum mechanical system, given in terms of E(3)-invariant quantum observables, is suggested. It is shown that, in the classical limit, this expression reproduces the a priori Euclidean distance between the subsystems, though at the quantum level it has a discrete character. \u2018Empirical\u2019 angles and 3-volume elements are also considered.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10701-022-00617-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297335", 
        "issn": [
          "0015-9018", 
          "1572-9516"
        ], 
        "name": "Foundations of Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "quantum mechanical systems", 
      "angular momentum", 
      "elementary subsystems", 
      "relative orbital angular momentum", 
      "orbital angular momentum", 
      "mechanical systems", 
      "total angular momentum", 
      "quantum level", 
      "quantum mechanics", 
      "classical limit", 
      "classical observables", 
      "invariant quantum", 
      "geometry theorems", 
      "three-space", 
      "orbital part", 
      "mass line", 
      "natural decomposition", 
      "momentum", 
      "empirical distance", 
      "subsystems", 
      "quantum", 
      "discrete characters", 
      "spin", 
      "observables", 
      "composite system", 
      "Euclidean distance", 
      "theorem", 
      "distance", 
      "Penrose", 
      "mechanics", 
      "system", 
      "angle", 
      "limit", 
      "decomposition", 
      "terms", 
      "lines", 
      "Empirical", 
      "observations", 
      "elements", 
      "center", 
      "character", 
      "part", 
      "expression", 
      "levels"
    ], 
    "name": "Three-Space from Quantum Mechanics", 
    "pagination": "102", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150763359"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10701-022-00617-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10701-022-00617-2", 
      "https://app.dimensions.ai/details/publication/pub.1150763359"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_944.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10701-022-00617-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00617-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00617-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00617-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00617-2'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      69 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10701-022-00617-2 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nf328d1b2314b4fd4a51cabdaee0b9e7c
4 schema:citation sg:pub.10.1007/s10701-022-00616-3
5 schema:datePublished 2022-09-05
6 schema:datePublishedReg 2022-09-05
7 schema:description The spin geometry theorem of Penrose is extended from SU(2) to E(3) (Euclidean) invariant elementary quantum mechanical systems. Using the natural decomposition of the total angular momentum into its spin and orbital parts, the distance between the centre-of-mass lines of the elementary subsystems of a classical composite system can be recovered from their relative orbital angular momenta by E(3)-invariant classical observables. Motivated by this observation, an expression for the ‘empirical distance’ between the elementary subsystems of a composite quantum mechanical system, given in terms of E(3)-invariant quantum observables, is suggested. It is shown that, in the classical limit, this expression reproduces the a priori Euclidean distance between the subsystems, though at the quantum level it has a discrete character. ‘Empirical’ angles and 3-volume elements are also considered.
8 schema:genre article
9 schema:isAccessibleForFree true
10 schema:isPartOf Nba2abcc469e048f2a7e500d6ef681203
11 Ndd2439bc4b7e47f7b0031be8d609b710
12 sg:journal.1297335
13 schema:keywords Empirical
14 Euclidean distance
15 Penrose
16 angle
17 angular momentum
18 center
19 character
20 classical limit
21 classical observables
22 composite system
23 decomposition
24 discrete characters
25 distance
26 elementary subsystems
27 elements
28 empirical distance
29 expression
30 geometry theorems
31 invariant quantum
32 levels
33 limit
34 lines
35 mass line
36 mechanical systems
37 mechanics
38 momentum
39 natural decomposition
40 observables
41 observations
42 orbital angular momentum
43 orbital part
44 part
45 quantum
46 quantum level
47 quantum mechanical systems
48 quantum mechanics
49 relative orbital angular momentum
50 spin
51 subsystems
52 system
53 terms
54 theorem
55 three-space
56 total angular momentum
57 schema:name Three-Space from Quantum Mechanics
58 schema:pagination 102
59 schema:productId N2eedb98302f841c9806f46f0dda26942
60 N74424744da3e44d6ac0ae867254d20e2
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150763359
62 https://doi.org/10.1007/s10701-022-00617-2
63 schema:sdDatePublished 2022-12-01T06:44
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N355011aad64040dc9bd2d651393f39f2
66 schema:url https://doi.org/10.1007/s10701-022-00617-2
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N2eedb98302f841c9806f46f0dda26942 schema:name doi
71 schema:value 10.1007/s10701-022-00617-2
72 rdf:type schema:PropertyValue
73 N355011aad64040dc9bd2d651393f39f2 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N74424744da3e44d6ac0ae867254d20e2 schema:name dimensions_id
76 schema:value pub.1150763359
77 rdf:type schema:PropertyValue
78 Nba2abcc469e048f2a7e500d6ef681203 schema:volumeNumber 52
79 rdf:type schema:PublicationVolume
80 Ndd2439bc4b7e47f7b0031be8d609b710 schema:issueNumber 5
81 rdf:type schema:PublicationIssue
82 Nf328d1b2314b4fd4a51cabdaee0b9e7c rdf:first sg:person.07646132545.04
83 rdf:rest rdf:nil
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
88 schema:name Quantum Physics
89 rdf:type schema:DefinedTerm
90 sg:journal.1297335 schema:issn 0015-9018
91 1572-9516
92 schema:name Foundations of Physics
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.07646132545.04 schema:affiliation grid-institutes:grid.419766.b
96 schema:familyName Szabados
97 schema:givenName László B.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646132545.04
99 rdf:type schema:Person
100 sg:pub.10.1007/s10701-022-00616-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150428971
101 https://doi.org/10.1007/s10701-022-00616-3
102 rdf:type schema:CreativeWork
103 grid-institutes:grid.419766.b schema:alternateName Wigner Research Centre for Physics, 114, P. O. Box 49, 1525, Budapest, Hungary
104 schema:name Wigner Research Centre for Physics, 114, P. O. Box 49, 1525, Budapest, Hungary
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...