A Note on Penrose’s Spin-Geometry Theorem and the Geometry of ‘Empirical Quantum Angles’ View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-08-23

AUTHORS

László B. Szabados

ABSTRACT

In the traditional formalism of quantum mechanics, a simple direct proof of (a version of) the Spin Geometry Theorem of Penrose is given; and the structure of a model of the ‘space of the quantum directions’, defined in terms of elementary SU(2)-invariant observables of the quantum mechanical systems, is sketched.

PAGES

96

References to SciGraph publications

  • 1993. Sphere Packings, Lattices and Groups in NONE
  • 2010-06-19. Building up spacetime with quantum entanglement in GENERAL RELATIVITY AND GRAVITATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10701-022-00616-3

    DOI

    http://dx.doi.org/10.1007/s10701-022-00616-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150428971


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wigner Research Centre for Physics, P. O. Box 49, EU, 1525, Budapest 114, Hungary", 
              "id": "http://www.grid.ac/institutes/grid.419766.b", 
              "name": [
                "Wigner Research Centre for Physics, P. O. Box 49, EU, 1525, Budapest 114, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szabados", 
            "givenName": "L\u00e1szl\u00f3 B.", 
            "id": "sg:person.07646132545.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646132545.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10714-010-1034-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036372245", 
              "https://doi.org/10.1007/s10714-010-1034-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2249-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044131083", 
              "https://doi.org/10.1007/978-1-4757-2249-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-23", 
        "datePublishedReg": "2022-08-23", 
        "description": "In the traditional formalism of quantum mechanics, a simple direct proof of (a version of) the Spin Geometry Theorem of Penrose is given; and the structure of a model of the \u2018space of the quantum directions\u2019, defined in terms of elementary SU(2)-invariant observables of the quantum mechanical systems, is sketched.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10701-022-00616-3", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297335", 
            "issn": [
              "0015-9018", 
              "1572-9516"
            ], 
            "name": "Foundations of Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "keywords": [
          "quantum mechanical systems", 
          "simple direct proof", 
          "invariant observables", 
          "geometry theorems", 
          "quantum mechanics", 
          "mechanical systems", 
          "traditional formalism", 
          "quantum angle", 
          "theorem", 
          "direct proof", 
          "formalism", 
          "observables", 
          "Penrose", 
          "mechanics", 
          "geometry", 
          "space", 
          "proof", 
          "model", 
          "terms", 
          "direction", 
          "system", 
          "angle", 
          "note", 
          "structure"
        ], 
        "name": "A Note on Penrose\u2019s Spin-Geometry Theorem and the Geometry of \u2018Empirical Quantum Angles\u2019", 
        "pagination": "96", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150428971"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10701-022-00616-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10701-022-00616-3", 
          "https://app.dimensions.ai/details/publication/pub.1150428971"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_931.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10701-022-00616-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00616-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00616-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00616-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-022-00616-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      52 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10701-022-00616-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:02
    4 anzsrc-for:0206
    5 schema:author N786bacccc4ca462eac4c20a92221d3b1
    6 schema:citation sg:pub.10.1007/978-1-4757-2249-9
    7 sg:pub.10.1007/s10714-010-1034-0
    8 schema:datePublished 2022-08-23
    9 schema:datePublishedReg 2022-08-23
    10 schema:description In the traditional formalism of quantum mechanics, a simple direct proof of (a version of) the Spin Geometry Theorem of Penrose is given; and the structure of a model of the ‘space of the quantum directions’, defined in terms of elementary SU(2)-invariant observables of the quantum mechanical systems, is sketched.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N4c17a821aee0457aa9ff4af38de06c21
    14 Nc11fb6f0ae6744a6adfafd6cd4fa9db2
    15 sg:journal.1297335
    16 schema:keywords Penrose
    17 angle
    18 direct proof
    19 direction
    20 formalism
    21 geometry
    22 geometry theorems
    23 invariant observables
    24 mechanical systems
    25 mechanics
    26 model
    27 note
    28 observables
    29 proof
    30 quantum angle
    31 quantum mechanical systems
    32 quantum mechanics
    33 simple direct proof
    34 space
    35 structure
    36 system
    37 terms
    38 theorem
    39 traditional formalism
    40 schema:name A Note on Penrose’s Spin-Geometry Theorem and the Geometry of ‘Empirical Quantum Angles’
    41 schema:pagination 96
    42 schema:productId Nc32ce9029994497dbebd4018d5b834a8
    43 Ne1b1575e702543298a4f2d6196dc3c34
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150428971
    45 https://doi.org/10.1007/s10701-022-00616-3
    46 schema:sdDatePublished 2022-12-01T06:44
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nfca2ae4f69644a58befe95112b1fd057
    49 schema:url https://doi.org/10.1007/s10701-022-00616-3
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N4c17a821aee0457aa9ff4af38de06c21 schema:volumeNumber 52
    54 rdf:type schema:PublicationVolume
    55 N786bacccc4ca462eac4c20a92221d3b1 rdf:first sg:person.07646132545.04
    56 rdf:rest rdf:nil
    57 Nc11fb6f0ae6744a6adfafd6cd4fa9db2 schema:issueNumber 4
    58 rdf:type schema:PublicationIssue
    59 Nc32ce9029994497dbebd4018d5b834a8 schema:name dimensions_id
    60 schema:value pub.1150428971
    61 rdf:type schema:PropertyValue
    62 Ne1b1575e702543298a4f2d6196dc3c34 schema:name doi
    63 schema:value 10.1007/s10701-022-00616-3
    64 rdf:type schema:PropertyValue
    65 Nfca2ae4f69644a58befe95112b1fd057 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Pure Mathematics
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Physical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Quantum Physics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1297335 schema:issn 0015-9018
    80 1572-9516
    81 schema:name Foundations of Physics
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.07646132545.04 schema:affiliation grid-institutes:grid.419766.b
    85 schema:familyName Szabados
    86 schema:givenName László B.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646132545.04
    88 rdf:type schema:Person
    89 sg:pub.10.1007/978-1-4757-2249-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044131083
    90 https://doi.org/10.1007/978-1-4757-2249-9
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/s10714-010-1034-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036372245
    93 https://doi.org/10.1007/s10714-010-1034-0
    94 rdf:type schema:CreativeWork
    95 grid-institutes:grid.419766.b schema:alternateName Wigner Research Centre for Physics, P. O. Box 49, EU, 1525, Budapest 114, Hungary
    96 schema:name Wigner Research Centre for Physics, P. O. Box 49, EU, 1525, Budapest 114, Hungary
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...