Physics Beyond the Multiverse: Naturalness and the Quest for a Fundamental Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-20

AUTHORS

Heinrich Päs

ABSTRACT

Finetuning and Naturalness are extra-empirical theory assessments that reflect our expectation how scientific theories should provide an intuitive understanding about the foundations underlying the observed phenomena. Recently, the absence of new physics at the LHC and the theoretical evidence for a multiverse of alternative physical realities, predicted by our best fundamental theories, have casted doubts about the validity of these concepts. In this essay we argue that the discussion about Finetuning should not predominantly concentrate on the desired features a fundamental theory is expected to have, but rather on the question what a theory needs to qualify as fundamental in the first place. By arguing that a fundamental description of the Universe should possess zero entropy, we develop a ‘holistic’ concept for the most fundamental layer of reality: The fundamental description of the Universe is the Universe itself, understood as an entangled quantum state. Adopting a universal applicability of quantum mechanics, in this framework the behavior of subsystems can be understood as the perspectival experience of an entangled quantum Universe perceived through the “lens of decoherence”. In this picture the fundamental reality is non-local, and finetuned coincidences in effective theories may be understood in a way similar to EPR-correlations. This notion provides a fresh view on the topic of Naturalness and Finetuning since it suggests that Finetuning problems and hints for anthropic explanations are an artifact of theories building up on subsystems rather than on the fundamental description. Recent work in quantum gravity aiming at an understanding of spacetime geometry from entanglement entropy could be interpreted as a first sign of such a paradigm shift. More... »

PAGES

1-15

References to SciGraph publications

  • 2013-08. Quantum Mechanics, Spacetime Locality, and Gravity in FOUNDATIONS OF PHYSICS
  • 2000-06-04. Quantization of four-form fluxes and dynamical neutralization of the cosmological constant in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-11. Physical theories, eternal inflation, and the quantum universe in JOURNAL OF HIGH ENERGY PHYSICS
  • 1996-02. Does the universe in fact contain almost no information? in FOUNDATIONS OF PHYSICS LETTERS
  • 2016-10. From physical symmetries to emergent gauge symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 1932-01. Über den Bau der Atomkerne. I in ZEITSCHRIFT FÜR PHYSIK
  • 2010-10. Building up spacetime with quantum entanglement in GENERAL RELATIVITY AND GRAVITATION
  • 2018-12. Quantum monism: an assessment in PHILOSOPHICAL STUDIES
  • 1935-11. Die gegenwärtige Situation in der Quantenmechanik in THE SCIENCE OF NATURE
  • 1970-03. On the interpretation of measurement in quantum theory in FOUNDATIONS OF PHYSICS
  • Journal

    TITLE

    Foundations of Physics

    ISSUE

    N/A

    VOLUME

    N/A

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10701-019-00247-1

    DOI

    http://dx.doi.org/10.1007/s10701-019-00247-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112902173


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Fakult\u00e4t f\u00fcr Physik, Technische Universit\u00e4t Dortmund, 44221, Dortmund, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e4s", 
            "givenName": "Heinrich", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0370-2693(99)00168-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002618900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(77)90435-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003529494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(77)90435-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003529494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2011)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006759132", 
              "https://doi.org/10.1007/jhep11(2011)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.47.777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.47.777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02186207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009733525", 
              "https://doi.org/10.1007/bf02186207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02186207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009733525", 
              "https://doi.org/10.1007/bf02186207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/00318108-2009-025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012755648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/06/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014664502", 
              "https://doi.org/10.1088/1126-6708/2000/06/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00708656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022543084", 
              "https://doi.org/10.1007/bf00708656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.85.1491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023090627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.85.1491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023090627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027716962", 
              "https://doi.org/10.1007/jhep10(2016)084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027716962", 
              "https://doi.org/10.1007/jhep10(2016)084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10701-013-9729-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030371243", 
              "https://doi.org/10.1007/s10701-013-9729-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10701-013-9729-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030371243", 
              "https://doi.org/10.1007/s10701-013-9729-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91126-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034843826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91126-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034843826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-010-1034-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036372245", 
              "https://doi.org/10.1007/s10714-010-1034-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-010-1034-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036372245", 
              "https://doi.org/10.1007/s10714-010-1034-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(86)90346-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038633578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(86)90346-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038633578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crhy.2012.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040096204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.4887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040245623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.4887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040245623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(93)91005-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041692149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(93)91005-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041692149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.045007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046715891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.045007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046715891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01342433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047500975", 
              "https://doi.org/10.1007/bf01342433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1314922110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048164930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01491891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049769603", 
              "https://doi.org/10.1007/bf01491891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(75)90211-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050519762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.160.1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.160.1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.14.870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060684547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.14.870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060684547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.24.1516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.24.1516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.32.438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060778099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.32.438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060778099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.29.454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060837642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.29.454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060837642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218271810018529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062969146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11098-017-1002-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092347844", 
              "https://doi.org/10.1007/s11098-017-1002-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-20", 
        "datePublishedReg": "2019-03-20", 
        "description": "Finetuning and Naturalness are extra-empirical theory assessments that reflect our expectation how scientific theories should provide an intuitive understanding about the foundations underlying the observed phenomena. Recently, the absence of new physics at the LHC and the theoretical evidence for a multiverse of alternative physical realities, predicted by our best fundamental theories, have casted doubts about the validity of these concepts. In this essay we argue that the discussion about Finetuning should not predominantly concentrate on the desired features a fundamental theory is expected to have, but rather on the question what a theory needs to qualify as fundamental in the first place. By arguing that a fundamental description of the Universe should possess zero entropy, we develop a \u2018holistic\u2019 concept for the most fundamental layer of reality: The fundamental description of the Universe is the Universe itself, understood as an entangled quantum state. Adopting a universal applicability of quantum mechanics, in this framework the behavior of subsystems can be understood as the perspectival experience of an entangled quantum Universe perceived through the \u201clens of decoherence\u201d. In this picture the fundamental reality is non-local, and finetuned coincidences in effective theories may be understood in a way similar to EPR-correlations. This notion provides a fresh view on the topic of Naturalness and Finetuning since it suggests that Finetuning problems and hints for anthropic explanations are an artifact of theories building up on subsystems rather than on the fundamental description. Recent work in quantum gravity aiming at an understanding of spacetime geometry from entanglement entropy could be interpreted as a first sign of such a paradigm shift.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10701-019-00247-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297335", 
            "issn": [
              "0015-9018", 
              "1572-9516"
            ], 
            "name": "Foundations of Physics", 
            "type": "Periodical"
          }
        ], 
        "name": "Physics Beyond the Multiverse: Naturalness and the Quest for a Fundamental Theory", 
        "pagination": "1-15", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ee117a426e0ef09fcbf5cd4f1ab9de00b72574e95760f949ed3b34bad7a5afe8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10701-019-00247-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112902173"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10701-019-00247-1", 
          "https://app.dimensions.ai/details/publication/pub.1112902173"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10701-019-00247-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00247-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00247-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00247-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00247-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10701-019-00247-1 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N6ead3e30e99e426f95137f77909339ce
    4 schema:citation sg:pub.10.1007/bf00708656
    5 sg:pub.10.1007/bf01342433
    6 sg:pub.10.1007/bf01491891
    7 sg:pub.10.1007/bf02186207
    8 sg:pub.10.1007/jhep10(2016)084
    9 sg:pub.10.1007/jhep11(2011)063
    10 sg:pub.10.1007/s10701-013-9729-1
    11 sg:pub.10.1007/s10714-010-1034-0
    12 sg:pub.10.1007/s11098-017-1002-6
    13 sg:pub.10.1088/1126-6708/2000/06/006
    14 https://doi.org/10.1016/0003-4916(75)90211-0
    15 https://doi.org/10.1016/0370-2693(77)90435-x
    16 https://doi.org/10.1016/0370-2693(86)91126-3
    17 https://doi.org/10.1016/0375-9601(86)90346-4
    18 https://doi.org/10.1016/0375-9601(93)91005-p
    19 https://doi.org/10.1016/j.crhy.2012.04.008
    20 https://doi.org/10.1016/s0370-2693(99)00168-9
    21 https://doi.org/10.1073/pnas.1314922110
    22 https://doi.org/10.1103/physrev.160.1113
    23 https://doi.org/10.1103/physrev.47.777
    24 https://doi.org/10.1103/physrevd.14.870
    25 https://doi.org/10.1103/physrevd.24.1516
    26 https://doi.org/10.1103/physrevd.85.045007
    27 https://doi.org/10.1103/physrevlett.32.438
    28 https://doi.org/10.1103/physrevlett.77.4887
    29 https://doi.org/10.1103/revmodphys.29.454
    30 https://doi.org/10.1103/revmodphys.85.1491
    31 https://doi.org/10.1142/s0218271810018529
    32 https://doi.org/10.1215/00318108-2009-025
    33 schema:datePublished 2019-03-20
    34 schema:datePublishedReg 2019-03-20
    35 schema:description Finetuning and Naturalness are extra-empirical theory assessments that reflect our expectation how scientific theories should provide an intuitive understanding about the foundations underlying the observed phenomena. Recently, the absence of new physics at the LHC and the theoretical evidence for a multiverse of alternative physical realities, predicted by our best fundamental theories, have casted doubts about the validity of these concepts. In this essay we argue that the discussion about Finetuning should not predominantly concentrate on the desired features a fundamental theory is expected to have, but rather on the question what a theory needs to qualify as fundamental in the first place. By arguing that a fundamental description of the Universe should possess zero entropy, we develop a ‘holistic’ concept for the most fundamental layer of reality: The fundamental description of the Universe is the Universe itself, understood as an entangled quantum state. Adopting a universal applicability of quantum mechanics, in this framework the behavior of subsystems can be understood as the perspectival experience of an entangled quantum Universe perceived through the “lens of decoherence”. In this picture the fundamental reality is non-local, and finetuned coincidences in effective theories may be understood in a way similar to EPR-correlations. This notion provides a fresh view on the topic of Naturalness and Finetuning since it suggests that Finetuning problems and hints for anthropic explanations are an artifact of theories building up on subsystems rather than on the fundamental description. Recent work in quantum gravity aiming at an understanding of spacetime geometry from entanglement entropy could be interpreted as a first sign of such a paradigm shift.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf sg:journal.1297335
    40 schema:name Physics Beyond the Multiverse: Naturalness and the Quest for a Fundamental Theory
    41 schema:pagination 1-15
    42 schema:productId N33bdec20db2f42f8a68e0ce9a327b3f1
    43 N6c698b4b0e1f4674b5e1010f5f1dc368
    44 N9b48b2cc7b0d4e1c9d3ba891c298c6a0
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112902173
    46 https://doi.org/10.1007/s10701-019-00247-1
    47 schema:sdDatePublished 2019-04-11T12:42
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Naa6c29bd6a5c41a29f8a7cdd49dbb0b9
    50 schema:url https://link.springer.com/10.1007%2Fs10701-019-00247-1
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N33bdec20db2f42f8a68e0ce9a327b3f1 schema:name doi
    55 schema:value 10.1007/s10701-019-00247-1
    56 rdf:type schema:PropertyValue
    57 N6c698b4b0e1f4674b5e1010f5f1dc368 schema:name readcube_id
    58 schema:value ee117a426e0ef09fcbf5cd4f1ab9de00b72574e95760f949ed3b34bad7a5afe8
    59 rdf:type schema:PropertyValue
    60 N6ead3e30e99e426f95137f77909339ce rdf:first Nfe2b83cf07864bbfa28d68c7a0cb4fc7
    61 rdf:rest rdf:nil
    62 N8cc69939bbac42d7bb41a03e5ba2f5d6 schema:name Fakultät für Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
    63 rdf:type schema:Organization
    64 N9b48b2cc7b0d4e1c9d3ba891c298c6a0 schema:name dimensions_id
    65 schema:value pub.1112902173
    66 rdf:type schema:PropertyValue
    67 Naa6c29bd6a5c41a29f8a7cdd49dbb0b9 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Nfe2b83cf07864bbfa28d68c7a0cb4fc7 schema:affiliation N8cc69939bbac42d7bb41a03e5ba2f5d6
    70 schema:familyName Päs
    71 schema:givenName Heinrich
    72 rdf:type schema:Person
    73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Physical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Quantum Physics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1297335 schema:issn 0015-9018
    80 1572-9516
    81 schema:name Foundations of Physics
    82 rdf:type schema:Periodical
    83 sg:pub.10.1007/bf00708656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022543084
    84 https://doi.org/10.1007/bf00708656
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf01342433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047500975
    87 https://doi.org/10.1007/bf01342433
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf01491891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049769603
    90 https://doi.org/10.1007/bf01491891
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf02186207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009733525
    93 https://doi.org/10.1007/bf02186207
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/jhep10(2016)084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027716962
    96 https://doi.org/10.1007/jhep10(2016)084
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/jhep11(2011)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006759132
    99 https://doi.org/10.1007/jhep11(2011)063
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s10701-013-9729-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030371243
    102 https://doi.org/10.1007/s10701-013-9729-1
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s10714-010-1034-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036372245
    105 https://doi.org/10.1007/s10714-010-1034-0
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s11098-017-1002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092347844
    108 https://doi.org/10.1007/s11098-017-1002-6
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1088/1126-6708/2000/06/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014664502
    111 https://doi.org/10.1088/1126-6708/2000/06/006
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0003-4916(75)90211-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050519762
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0370-2693(77)90435-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003529494
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0370-2693(86)91126-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034843826
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0375-9601(86)90346-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038633578
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/0375-9601(93)91005-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1041692149
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.crhy.2012.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040096204
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/s0370-2693(99)00168-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002618900
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1073/pnas.1314922110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048164930
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrev.160.1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435969
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrev.47.777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714864
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevd.14.870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684547
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevd.24.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688996
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevd.85.045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046715891
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevlett.32.438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778099
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.77.4887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040245623
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/revmodphys.29.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837642
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/revmodphys.85.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023090627
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1142/s0218271810018529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062969146
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1215/00318108-2009-025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012755648
    150 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...