Model Astrophysical Configurations with the Equation of State of Chaplygin Gas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Abdelghani Errehymy, Mohammed Daoud

ABSTRACT

We use the Tolman–Oppenheimer–Volkoff equations for a Chaplygin type fluid to study, analytically and numerically, the global behavior of static solutions of spherically symmetric objects. Two possible regimes are especially investigated. The first one is the phantom regime in which the pressure module exceeds the energy density. In this case the equator is absent and all the solutions have the geometry of a truncated spheroid with the same kind of singularity. The second case is the normal regime for which we determine all the solutions, excluding the de Sitter one, corresponding to a tri-dimensional spheroidal geometry. Beyond the equator, three possible cases are considered; the first case has a closed spheroid characterized by a Schwarzschild-kind singularity with an infinite blue-shift at the south pole, the second case configuration has a regular spheroid and the third case has configuration of a truncated spheroid having a scalar curvature singularity to a finite value of the radial distance. We also compare all the geometric configurations with ones obtained in the special case of Chaplygin gas. More... »

PAGES

1-32

References to SciGraph publications

  • 2002-01. Letter: Density Perturbations in a Universe Dominated by the Chaplygin Gas in GENERAL RELATIVITY AND GRAVITATION
  • 1997-05. The Expanding Universe in GENERAL RELATIVITY AND GRAVITATION
  • 2017-11. Phantom gravastar supported for the explanation of compact dark matter objects in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10701-019-00237-3

    DOI

    http://dx.doi.org/10.1007/s10701-019-00237-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111906499


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences A\u00efn Chock, University of Hassan II, M\u00e2arif, B.P.5366, Casablanca, Morocco"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Errehymy", 
            "givenName": "Abdelghani", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Centre for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.419330.c", 
              "name": [
                "Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences A\u00efn Chock, University of Hassan II, M\u00e2arif, B.P.5366, Casablanca, Morocco", 
                "Abdus Salam International Centre for Theoretical Physics, Miramare, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daoud", 
            "givenName": "Mohammed", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1018855621348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001258110", 
              "https://doi.org/10.1023/a:1018855621348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.67.063509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004127984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.67.063509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004127984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/107.5-6.410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010392980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.20.3.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016178396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(02)01716-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019128887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-8949/83/03/035901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026431134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.071301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030467894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.071301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030467894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2006/02/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031850919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2006/02/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031850919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.123512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032794660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.123512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032794660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.67.063003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037939688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.67.063003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037939688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.043507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038415832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.043507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038415832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.103518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038933215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.103518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038933215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.103518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038933215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015266421750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040077594", 
              "https://doi.org/10.1023/a:1015266421750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.103510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040520293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.103510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040520293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(01)00571-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045449427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051656783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051656783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.62.043511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051711795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.62.043511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051711795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/427863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052729373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/300499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058608115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/307221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058614743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2017-11777-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093027113", 
              "https://doi.org/10.1140/epjp/i2017-11777-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "We use the Tolman\u2013Oppenheimer\u2013Volkoff equations for a Chaplygin type fluid to study, analytically and numerically, the global behavior of static solutions of spherically symmetric objects. Two possible regimes are especially investigated. The first one is the phantom regime in which the pressure module exceeds the energy density. In this case the equator is absent and all the solutions have the geometry of a truncated spheroid with the same kind of singularity. The second case is the normal regime for which we determine all the solutions, excluding the de Sitter one, corresponding to a tri-dimensional spheroidal geometry. Beyond the equator, three possible cases are considered; the first case has a closed spheroid characterized by a Schwarzschild-kind singularity with an infinite blue-shift at the south pole, the second case configuration has a regular spheroid and the third case has configuration of a truncated spheroid having a scalar curvature singularity to a finite value of the radial distance. We also compare all the geometric configurations with ones obtained in the special case of Chaplygin gas.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10701-019-00237-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297335", 
            "issn": [
              "0015-9018", 
              "1572-9516"
            ], 
            "name": "Foundations of Physics", 
            "type": "Periodical"
          }
        ], 
        "name": "Model Astrophysical Configurations with the Equation of State of Chaplygin Gas", 
        "pagination": "1-32", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "02c8195bf9d39861492a0cdc25541f0bac23d17048b0c109c611dbbb2221659d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10701-019-00237-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111906499"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10701-019-00237-3", 
          "https://app.dimensions.ai/details/publication/pub.1111906499"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000329_0000000329/records_74701_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10701-019-00237-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00237-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00237-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00237-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-019-00237-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    129 TRIPLES      21 PREDICATES      46 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10701-019-00237-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd6d2ba1def414ecd8ea2e2db7380d5b4
    4 schema:citation sg:pub.10.1023/a:1015266421750
    5 sg:pub.10.1023/a:1018855621348
    6 sg:pub.10.1140/epjp/i2017-11777-0
    7 https://doi.org/10.1016/s0370-2693(01)00571-8
    8 https://doi.org/10.1016/s0370-2693(02)01716-1
    9 https://doi.org/10.1073/pnas.20.3.169
    10 https://doi.org/10.1086/300499
    11 https://doi.org/10.1086/307221
    12 https://doi.org/10.1086/427863
    13 https://doi.org/10.1088/0031-8949/83/03/035901
    14 https://doi.org/10.1088/1475-7516/2006/02/013
    15 https://doi.org/10.1093/mnras/107.5-6.410
    16 https://doi.org/10.1103/physrevd.62.043511
    17 https://doi.org/10.1103/physrevd.63.103510
    18 https://doi.org/10.1103/physrevd.66.043507
    19 https://doi.org/10.1103/physrevd.67.063003
    20 https://doi.org/10.1103/physrevd.67.063509
    21 https://doi.org/10.1103/physrevd.72.103518
    22 https://doi.org/10.1103/physrevd.72.123512
    23 https://doi.org/10.1103/physrevlett.91.071301
    24 https://doi.org/10.1103/revmodphys.75.559
    25 schema:datePublished 2019-02
    26 schema:datePublishedReg 2019-02-01
    27 schema:description We use the Tolman–Oppenheimer–Volkoff equations for a Chaplygin type fluid to study, analytically and numerically, the global behavior of static solutions of spherically symmetric objects. Two possible regimes are especially investigated. The first one is the phantom regime in which the pressure module exceeds the energy density. In this case the equator is absent and all the solutions have the geometry of a truncated spheroid with the same kind of singularity. The second case is the normal regime for which we determine all the solutions, excluding the de Sitter one, corresponding to a tri-dimensional spheroidal geometry. Beyond the equator, three possible cases are considered; the first case has a closed spheroid characterized by a Schwarzschild-kind singularity with an infinite blue-shift at the south pole, the second case configuration has a regular spheroid and the third case has configuration of a truncated spheroid having a scalar curvature singularity to a finite value of the radial distance. We also compare all the geometric configurations with ones obtained in the special case of Chaplygin gas.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1297335
    32 schema:name Model Astrophysical Configurations with the Equation of State of Chaplygin Gas
    33 schema:pagination 1-32
    34 schema:productId N221e09498bb84dccad453d080fbae6a2
    35 N4f26052649ae4fff929fd5387960befe
    36 Na6ab04c51299497faef9849fded7262e
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111906499
    38 https://doi.org/10.1007/s10701-019-00237-3
    39 schema:sdDatePublished 2019-04-11T09:01
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nd5ac4fd42fdf493c966b329e8fa0c886
    42 schema:url https://link.springer.com/10.1007%2Fs10701-019-00237-3
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N221e09498bb84dccad453d080fbae6a2 schema:name dimensions_id
    47 schema:value pub.1111906499
    48 rdf:type schema:PropertyValue
    49 N2a949117e70e46799e9cb3b8161541b2 schema:affiliation N649a5175bec1430fb920b769bea5c18a
    50 schema:familyName Errehymy
    51 schema:givenName Abdelghani
    52 rdf:type schema:Person
    53 N3ba8554786f94166b517fa207756096e rdf:first N56a82d82611a40388fa7b8ef21295db0
    54 rdf:rest rdf:nil
    55 N4f26052649ae4fff929fd5387960befe schema:name doi
    56 schema:value 10.1007/s10701-019-00237-3
    57 rdf:type schema:PropertyValue
    58 N56a82d82611a40388fa7b8ef21295db0 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
    59 schema:familyName Daoud
    60 schema:givenName Mohammed
    61 rdf:type schema:Person
    62 N649a5175bec1430fb920b769bea5c18a schema:name Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences Aïn Chock, University of Hassan II, Mâarif, B.P.5366, Casablanca, Morocco
    63 rdf:type schema:Organization
    64 Na6ab04c51299497faef9849fded7262e schema:name readcube_id
    65 schema:value 02c8195bf9d39861492a0cdc25541f0bac23d17048b0c109c611dbbb2221659d
    66 rdf:type schema:PropertyValue
    67 Nd5ac4fd42fdf493c966b329e8fa0c886 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Nd6d2ba1def414ecd8ea2e2db7380d5b4 rdf:first N2a949117e70e46799e9cb3b8161541b2
    70 rdf:rest N3ba8554786f94166b517fa207756096e
    71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Mathematical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Pure Mathematics
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1297335 schema:issn 0015-9018
    78 1572-9516
    79 schema:name Foundations of Physics
    80 rdf:type schema:Periodical
    81 sg:pub.10.1023/a:1015266421750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040077594
    82 https://doi.org/10.1023/a:1015266421750
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1023/a:1018855621348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001258110
    85 https://doi.org/10.1023/a:1018855621348
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1140/epjp/i2017-11777-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093027113
    88 https://doi.org/10.1140/epjp/i2017-11777-0
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/s0370-2693(01)00571-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045449427
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/s0370-2693(02)01716-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019128887
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1073/pnas.20.3.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016178396
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1086/300499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058608115
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1086/307221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058614743
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1086/427863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052729373
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1088/0031-8949/83/03/035901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026431134
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1088/1475-7516/2006/02/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031850919
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1093/mnras/107.5-6.410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010392980
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physrevd.62.043511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051711795
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/physrevd.63.103510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040520293
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physrevd.66.043507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038415832
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevd.67.063003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037939688
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevd.67.063509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004127984
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physrevd.72.103518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038933215
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physrevd.72.123512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032794660
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrevlett.91.071301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030467894
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/revmodphys.75.559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051656783
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
    127 schema:name Abdus Salam International Centre for Theoretical Physics, Miramare, Trieste, Italy
    128 Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences Aïn Chock, University of Hassan II, Mâarif, B.P.5366, Casablanca, Morocco
    129 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...