Ontology type: schema:ScholarlyArticle Open Access: True
2014-08-19
AUTHORS ABSTRACTQuantum anomalies in the inverse square potential are well known and widely investigated. Most prominent is the unbounded increase in oscillations of the particle’s state as it approaches the origin when the attractive coupling parameter is greater than the critical value of 1/4. Due to this unphysical divergence in oscillations, we are proposing that the interaction gets screened at short distances making the coupling parameter acquire an effective (renormalized) value that falls within the weak range 0–1/4. This prevents the oscillations form growing without limit giving a lower bound to the energy spectrum and forcing the Hamiltonian of the system to be self-adjoint. Technically, this translates into a regularization scheme whereby the inverse square potential is replaced near the origin by another that has the same singularity but with a weak coupling strength. Here, we take the Eckart as the regularizing potential and obtain the corresponding solutions (discrete bound states and continuum scattering states). More... »
PAGES1049-1058
http://scigraph.springernature.com/pub.10.1007/s10701-014-9828-7
DOIhttp://dx.doi.org/10.1007/s10701-014-9828-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013534015
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Bah\u00e7elievler Mahallesi, Fatih Caddesi, Rauf Orbay Sokak, \u00c7inar Apartmani 1, No. 17, Yalova, Turkey",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Saudi Center for Theoretical Physics, P. O. Box 32741, 21438, Jeddah, Saudi Arabia",
"Physics Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia",
"Bah\u00e7elievler Mahallesi, Fatih Caddesi, Rauf Orbay Sokak, \u00c7inar Apartmani 1, No. 17, Yalova, Turkey"
],
"type": "Organization"
},
"familyName": "Alhaidari",
"givenName": "A. D.",
"id": "sg:person.010122155242.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01221884",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012053209",
"https://doi.org/10.1007/bf01221884"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00249091",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004657241",
"https://doi.org/10.1007/bf00249091"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00023-011-0077-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018583746",
"https://doi.org/10.1007/s00023-011-0077-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-08-19",
"datePublishedReg": "2014-08-19",
"description": "Quantum anomalies in the inverse square potential are well known and widely investigated. Most prominent is the unbounded increase in oscillations of the particle\u2019s state as it approaches the origin when the attractive coupling parameter is greater than the critical value of 1/4. Due to this unphysical divergence in oscillations, we are proposing that the interaction gets screened at short distances making the coupling parameter acquire an effective (renormalized) value that falls within the weak range 0\u20131/4. This prevents the oscillations form growing without limit giving a lower bound to the energy spectrum and forcing the Hamiltonian of the system to be self-adjoint. Technically, this translates into a regularization scheme whereby the inverse square potential is replaced near the origin by another that has the same singularity but with a weak coupling strength. Here, we take the Eckart as the regularizing potential and obtain the corresponding solutions (discrete bound states and continuum scattering states).",
"genre": "article",
"id": "sg:pub.10.1007/s10701-014-9828-7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1297335",
"issn": [
"0015-9018",
"1572-9516"
],
"name": "Foundations of Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "44"
}
],
"keywords": [
"inverse square potential",
"square potential",
"coupling parameter",
"attractive inverse-square potential",
"energy spectrum",
"quantum anomalies",
"particle states",
"unphysical divergence",
"coupling strength",
"weak coupling strength",
"oscillations",
"range 0",
"same singularity",
"short distances",
"critical value",
"Hamiltonian",
"renormalization",
"effective value",
"regularization scheme",
"spectra",
"singularity",
"unbounded increase",
"state",
"Eckart",
"potential",
"parameters",
"distance",
"limit",
"origin",
"interaction",
"values",
"scheme",
"strength",
"corresponding solutions",
"anomalies",
"divergence",
"system",
"solution",
"increase"
],
"name": "Renormalization of the Strongly Attractive Inverse Square Potential: Taming the Singularity",
"pagination": "1049-1058",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013534015"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10701-014-9828-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10701-014-9828-7",
"https://app.dimensions.ai/details/publication/pub.1013534015"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_625.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10701-014-9828-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-014-9828-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-014-9828-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-014-9828-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-014-9828-7'
This table displays all metadata directly associated to this object as RDF triples.
111 TRIPLES
22 PREDICATES
67 URIs
56 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10701-014-9828-7 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | Nd1e64d22cd5c48608a04754283bbfa66 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00249091 |
5 | ″ | ″ | sg:pub.10.1007/bf01221884 |
6 | ″ | ″ | sg:pub.10.1007/s00023-011-0077-4 |
7 | ″ | schema:datePublished | 2014-08-19 |
8 | ″ | schema:datePublishedReg | 2014-08-19 |
9 | ″ | schema:description | Quantum anomalies in the inverse square potential are well known and widely investigated. Most prominent is the unbounded increase in oscillations of the particle’s state as it approaches the origin when the attractive coupling parameter is greater than the critical value of 1/4. Due to this unphysical divergence in oscillations, we are proposing that the interaction gets screened at short distances making the coupling parameter acquire an effective (renormalized) value that falls within the weak range 0–1/4. This prevents the oscillations form growing without limit giving a lower bound to the energy spectrum and forcing the Hamiltonian of the system to be self-adjoint. Technically, this translates into a regularization scheme whereby the inverse square potential is replaced near the origin by another that has the same singularity but with a weak coupling strength. Here, we take the Eckart as the regularizing potential and obtain the corresponding solutions (discrete bound states and continuum scattering states). |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N7fba6872e88f401a993b61247803f368 |
14 | ″ | ″ | Nd541dbe184374a1eb15b2d20bef556c0 |
15 | ″ | ″ | sg:journal.1297335 |
16 | ″ | schema:keywords | Eckart |
17 | ″ | ″ | Hamiltonian |
18 | ″ | ″ | anomalies |
19 | ″ | ″ | attractive inverse-square potential |
20 | ″ | ″ | corresponding solutions |
21 | ″ | ″ | coupling parameter |
22 | ″ | ″ | coupling strength |
23 | ″ | ″ | critical value |
24 | ″ | ″ | distance |
25 | ″ | ″ | divergence |
26 | ″ | ″ | effective value |
27 | ″ | ″ | energy spectrum |
28 | ″ | ″ | increase |
29 | ″ | ″ | interaction |
30 | ″ | ″ | inverse square potential |
31 | ″ | ″ | limit |
32 | ″ | ″ | origin |
33 | ″ | ″ | oscillations |
34 | ″ | ″ | parameters |
35 | ″ | ″ | particle states |
36 | ″ | ″ | potential |
37 | ″ | ″ | quantum anomalies |
38 | ″ | ″ | range 0 |
39 | ″ | ″ | regularization scheme |
40 | ″ | ″ | renormalization |
41 | ″ | ″ | same singularity |
42 | ″ | ″ | scheme |
43 | ″ | ″ | short distances |
44 | ″ | ″ | singularity |
45 | ″ | ″ | solution |
46 | ″ | ″ | spectra |
47 | ″ | ″ | square potential |
48 | ″ | ″ | state |
49 | ″ | ″ | strength |
50 | ″ | ″ | system |
51 | ″ | ″ | unbounded increase |
52 | ″ | ″ | unphysical divergence |
53 | ″ | ″ | values |
54 | ″ | ″ | weak coupling strength |
55 | ″ | schema:name | Renormalization of the Strongly Attractive Inverse Square Potential: Taming the Singularity |
56 | ″ | schema:pagination | 1049-1058 |
57 | ″ | schema:productId | N892ca62b3dfb430ab1064eb22f308887 |
58 | ″ | ″ | Ndab324207cba4145953daa5785165236 |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013534015 |
60 | ″ | ″ | https://doi.org/10.1007/s10701-014-9828-7 |
61 | ″ | schema:sdDatePublished | 2022-05-20T07:29 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | N56ea1128d38b4596a29f50a6042da598 |
64 | ″ | schema:url | https://doi.org/10.1007/s10701-014-9828-7 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N56ea1128d38b4596a29f50a6042da598 | schema:name | Springer Nature - SN SciGraph project |
69 | ″ | rdf:type | schema:Organization |
70 | N7fba6872e88f401a993b61247803f368 | schema:volumeNumber | 44 |
71 | ″ | rdf:type | schema:PublicationVolume |
72 | N892ca62b3dfb430ab1064eb22f308887 | schema:name | dimensions_id |
73 | ″ | schema:value | pub.1013534015 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | Nd1e64d22cd5c48608a04754283bbfa66 | rdf:first | sg:person.010122155242.02 |
76 | ″ | rdf:rest | rdf:nil |
77 | Nd541dbe184374a1eb15b2d20bef556c0 | schema:issueNumber | 10 |
78 | ″ | rdf:type | schema:PublicationIssue |
79 | Ndab324207cba4145953daa5785165236 | schema:name | doi |
80 | ″ | schema:value | 10.1007/s10701-014-9828-7 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
83 | ″ | schema:name | Physical Sciences |
84 | ″ | rdf:type | schema:DefinedTerm |
85 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
86 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | sg:journal.1297335 | schema:issn | 0015-9018 |
89 | ″ | ″ | 1572-9516 |
90 | ″ | schema:name | Foundations of Physics |
91 | ″ | schema:publisher | Springer Nature |
92 | ″ | rdf:type | schema:Periodical |
93 | sg:person.010122155242.02 | schema:affiliation | grid-institutes:None |
94 | ″ | schema:familyName | Alhaidari |
95 | ″ | schema:givenName | A. D. |
96 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02 |
97 | ″ | rdf:type | schema:Person |
98 | sg:pub.10.1007/bf00249091 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004657241 |
99 | ″ | ″ | https://doi.org/10.1007/bf00249091 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | sg:pub.10.1007/bf01221884 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012053209 |
102 | ″ | ″ | https://doi.org/10.1007/bf01221884 |
103 | ″ | rdf:type | schema:CreativeWork |
104 | sg:pub.10.1007/s00023-011-0077-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018583746 |
105 | ″ | ″ | https://doi.org/10.1007/s00023-011-0077-4 |
106 | ″ | rdf:type | schema:CreativeWork |
107 | grid-institutes:None | schema:alternateName | Bahçelievler Mahallesi, Fatih Caddesi, Rauf Orbay Sokak, Çinar Apartmani 1, No. 17, Yalova, Turkey |
108 | ″ | schema:name | Bahçelievler Mahallesi, Fatih Caddesi, Rauf Orbay Sokak, Çinar Apartmani 1, No. 17, Yalova, Turkey |
109 | ″ | ″ | Physics Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia |
110 | ″ | ″ | Saudi Center for Theoretical Physics, P. O. Box 32741, 21438, Jeddah, Saudi Arabia |
111 | ″ | rdf:type | schema:Organization |