Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, Ichiro Yamato

ABSTRACT

There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics. More... »

PAGES

895-911

References to SciGraph publications

  • 2003-09. How Can We Observe and Describe Chaos? in OPEN SYSTEMS AND INFORMATION DYNAMICS
  • 2011-03. A Quantum-Bayesian Route to Quantum-State Space in FOUNDATIONS OF PHYSICS
  • 1999-02. Compound Channels, Transition Expectations, and Liftings in APPLIED MATHEMATICS & OPTIMIZATION
  • 2011-03. On the Reasonable and Unreasonable Effectiveness of Mathematics in Classical and Quantum Physics in FOUNDATIONS OF PHYSICS
  • 2011-03. Quantum-Like Model for Decision Making Process in Two Players Game in FOUNDATIONS OF PHYSICS
  • 2004-09. On Quantum-Like Probabilistic Structure of Mental Information in OPEN SYSTEMS AND INFORMATION DYNAMICS
  • 2004-09. A Stochastic Limit Approach to the SAT Problem in OPEN SYSTEMS AND INFORMATION DYNAMICS
  • 2009. Contextual Approach to Quantum Formalism in NONE
  • 1998-01. Complexities and Their Applications to Characterization of Chaos in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2011-03. Generalized Observables, Bell’s Inequalities and Mixtures in the ESR Model for QM in FOUNDATIONS OF PHYSICS
  • 1983-11. Note on quantum probability in LETTERE AL NUOVO CIMENTO (1971-1985)
  • 2011-06. Quantum-like interference effect in gene expression: glucose-lactose destructive interference in SYSTEMS AND SYNTHETIC BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10701-013-9725-5

    DOI

    http://dx.doi.org/10.1007/s10701-013-9725-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000201912


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Technology, Tokuyama College", 
              "id": "https://www.grid.ac/institutes/grid.472129.b", 
              "name": [
                "Tokuyama College of Technology, Gakuendai, 745-8585, Shunan, Yamaguchi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asano", 
            "givenName": "Masanari", 
            "id": "sg:person.0705554004.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705554004.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Linnaeus University", 
              "id": "https://www.grid.ac/institutes/grid.8148.5", 
              "name": [
                "International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, 35195, V\u00e4xj\u00f6, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Basieva", 
            "givenName": "Irina", 
            "id": "sg:person.013256162403.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013256162403.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Linnaeus University", 
              "id": "https://www.grid.ac/institutes/grid.8148.5", 
              "name": [
                "International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, 35195, V\u00e4xj\u00f6, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khrennikov", 
            "givenName": "Andrei", 
            "id": "sg:person.07643047002.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07643047002.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo University of Science", 
              "id": "https://www.grid.ac/institutes/grid.143643.7", 
              "name": [
                "Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohya", 
            "givenName": "Masanori", 
            "id": "sg:person.013365420775.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo University of Science", 
              "id": "https://www.grid.ac/institutes/grid.143643.7", 
              "name": [
                "Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamato", 
            "givenName": "Ichiro", 
            "id": "sg:person.01070633550.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070633550.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10701-010-9435-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004320643", 
              "https://doi.org/10.1007/s10701-010-9435-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10701-009-9404-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005655916", 
              "https://doi.org/10.1007/s10701-009-9404-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002459900097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006979639", 
              "https://doi.org/10.1007/s002459900097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.65.022305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008645504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.65.022305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008645504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-9593-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013574514", 
              "https://doi.org/10.1007/978-1-4020-9593-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-9593-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013574514", 
              "https://doi.org/10.1007/978-1-4020-9593-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1014599045", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1014599045", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2010.10.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019144665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10701-010-9442-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019940630", 
              "https://doi.org/10.1007/s10701-010-9442-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:opsy.0000047570.68941.9d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023901362", 
              "https://doi.org/10.1023/b:opsy.0000047570.68941.9d"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4877(03)90002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024115457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2009.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025179527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2005.08.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027517521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-0779(99)00050-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028540711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biosystems.2005.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029121138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1874554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030959761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-4877(89)90034-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1031609612", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1031609612", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11693-011-9081-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033541586", 
              "https://doi.org/10.1007/s11693-011-9081-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02789599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035227287", 
              "https://doi.org/10.1007/bf02789599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025123923519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036899820", 
              "https://doi.org/10.1023/a:1025123923519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1420743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040900481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2006.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044009508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2443.1996.24025.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044112370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026620313483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044316893", 
              "https://doi.org/10.1023/a:1026620313483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10701-010-9454-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045074803", 
              "https://doi.org/10.1007/s10701-010-9454-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:opsy.0000047567.88377.74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051753591", 
              "https://doi.org/10.1023/b:opsy.0000047567.88377.74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1983.1056719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061648898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s1230161209000074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063015506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s123016120900027x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063015526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s1230161211000042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063015560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/86/20009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064232477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812793171_0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096069381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812793171_0006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096069387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812793171_0014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096069395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3567428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098534619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789814273756_0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098908035"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-07", 
        "datePublishedReg": "2013-07-01", 
        "description": "There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10701-013-9725-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297335", 
            "issn": [
              "0015-9018", 
              "1572-9516"
            ], 
            "name": "Foundations of Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "name": "Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law", 
        "pagination": "895-911", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "00f5ba3f49ada44a5e8e2d2845330753e01ebdbff5be47aee7d727ca3835d205"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10701-013-9725-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000201912"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10701-013-9725-5", 
          "https://app.dimensions.ai/details/publication/pub.1000201912"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10701-013-9725-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-013-9725-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-013-9725-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-013-9725-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-013-9725-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10701-013-9725-5 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N25371799a32a49bdbce937ef6a497fe3
    4 schema:citation sg:pub.10.1007/978-1-4020-9593-1
    5 sg:pub.10.1007/bf02789599
    6 sg:pub.10.1007/s002459900097
    7 sg:pub.10.1007/s10701-009-9404-8
    8 sg:pub.10.1007/s10701-010-9435-1
    9 sg:pub.10.1007/s10701-010-9442-2
    10 sg:pub.10.1007/s10701-010-9454-y
    11 sg:pub.10.1007/s11693-011-9081-8
    12 sg:pub.10.1023/a:1025123923519
    13 sg:pub.10.1023/a:1026620313483
    14 sg:pub.10.1023/b:opsy.0000047567.88377.74
    15 sg:pub.10.1023/b:opsy.0000047570.68941.9d
    16 https://app.dimensions.ai/details/publication/pub.1014599045
    17 https://app.dimensions.ai/details/publication/pub.1031609612
    18 https://doi.org/10.1016/0034-4877(89)90034-7
    19 https://doi.org/10.1016/j.biosystems.2005.11.005
    20 https://doi.org/10.1016/j.jmp.2006.01.003
    21 https://doi.org/10.1016/j.jmp.2009.01.007
    22 https://doi.org/10.1016/j.physleta.2005.08.066
    23 https://doi.org/10.1016/j.physleta.2010.10.063
    24 https://doi.org/10.1016/s0034-4877(03)90002-4
    25 https://doi.org/10.1016/s0960-0779(99)00050-8
    26 https://doi.org/10.1046/j.1365-2443.1996.24025.x
    27 https://doi.org/10.1063/1.1420743
    28 https://doi.org/10.1063/1.1874554
    29 https://doi.org/10.1063/1.3567428
    30 https://doi.org/10.1103/physreva.65.022305
    31 https://doi.org/10.1109/tit.1983.1056719
    32 https://doi.org/10.1142/9789812793171_0001
    33 https://doi.org/10.1142/9789812793171_0006
    34 https://doi.org/10.1142/9789812793171_0014
    35 https://doi.org/10.1142/9789814273756_0001
    36 https://doi.org/10.1142/s1230161209000074
    37 https://doi.org/10.1142/s123016120900027x
    38 https://doi.org/10.1142/s1230161211000042
    39 https://doi.org/10.1209/0295-5075/86/20009
    40 schema:datePublished 2013-07
    41 schema:datePublishedReg 2013-07-01
    42 schema:description There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N83176398daeb406787e0f4ef69597a74
    47 Ncdb0418b46d64be6875dd351efa8ba2d
    48 sg:journal.1297335
    49 schema:name Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law
    50 schema:pagination 895-911
    51 schema:productId N54dbeba779a244759ce2615a4dceef5c
    52 N5be6f360ed8a4604b47d7d03b48bc973
    53 Ne1fd7737230c4886b47bf53e61facc8b
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000201912
    55 https://doi.org/10.1007/s10701-013-9725-5
    56 schema:sdDatePublished 2019-04-10T14:02
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N4f127bdd680948efac7e679b66710d60
    59 schema:url http://link.springer.com/10.1007/s10701-013-9725-5
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N25371799a32a49bdbce937ef6a497fe3 rdf:first sg:person.0705554004.48
    64 rdf:rest Nd4dc4d84b2404c9d9d724dbe682028fd
    65 N4f127bdd680948efac7e679b66710d60 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N54dbeba779a244759ce2615a4dceef5c schema:name readcube_id
    68 schema:value 00f5ba3f49ada44a5e8e2d2845330753e01ebdbff5be47aee7d727ca3835d205
    69 rdf:type schema:PropertyValue
    70 N5be6f360ed8a4604b47d7d03b48bc973 schema:name doi
    71 schema:value 10.1007/s10701-013-9725-5
    72 rdf:type schema:PropertyValue
    73 N83176398daeb406787e0f4ef69597a74 schema:issueNumber 7
    74 rdf:type schema:PublicationIssue
    75 Ncdb0418b46d64be6875dd351efa8ba2d schema:volumeNumber 43
    76 rdf:type schema:PublicationVolume
    77 Nd4dc4d84b2404c9d9d724dbe682028fd rdf:first sg:person.013256162403.13
    78 rdf:rest Nd836dad7b6fc4622839b946c402712e5
    79 Nd836dad7b6fc4622839b946c402712e5 rdf:first sg:person.07643047002.20
    80 rdf:rest Nef555eda50c64fb8890eed0f2fdb3c6a
    81 Ne1fd7737230c4886b47bf53e61facc8b schema:name dimensions_id
    82 schema:value pub.1000201912
    83 rdf:type schema:PropertyValue
    84 Nef555eda50c64fb8890eed0f2fdb3c6a rdf:first sg:person.013365420775.41
    85 rdf:rest Nf8721567be8f4cc29351805b17290f9b
    86 Nf8721567be8f4cc29351805b17290f9b rdf:first sg:person.01070633550.42
    87 rdf:rest rdf:nil
    88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Physical Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1297335 schema:issn 0015-9018
    95 1572-9516
    96 schema:name Foundations of Physics
    97 rdf:type schema:Periodical
    98 sg:person.01070633550.42 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
    99 schema:familyName Yamato
    100 schema:givenName Ichiro
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070633550.42
    102 rdf:type schema:Person
    103 sg:person.013256162403.13 schema:affiliation https://www.grid.ac/institutes/grid.8148.5
    104 schema:familyName Basieva
    105 schema:givenName Irina
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013256162403.13
    107 rdf:type schema:Person
    108 sg:person.013365420775.41 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
    109 schema:familyName Ohya
    110 schema:givenName Masanori
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41
    112 rdf:type schema:Person
    113 sg:person.0705554004.48 schema:affiliation https://www.grid.ac/institutes/grid.472129.b
    114 schema:familyName Asano
    115 schema:givenName Masanari
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705554004.48
    117 rdf:type schema:Person
    118 sg:person.07643047002.20 schema:affiliation https://www.grid.ac/institutes/grid.8148.5
    119 schema:familyName Khrennikov
    120 schema:givenName Andrei
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07643047002.20
    122 rdf:type schema:Person
    123 sg:pub.10.1007/978-1-4020-9593-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013574514
    124 https://doi.org/10.1007/978-1-4020-9593-1
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf02789599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035227287
    127 https://doi.org/10.1007/bf02789599
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s002459900097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979639
    130 https://doi.org/10.1007/s002459900097
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s10701-009-9404-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005655916
    133 https://doi.org/10.1007/s10701-009-9404-8
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s10701-010-9435-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004320643
    136 https://doi.org/10.1007/s10701-010-9435-1
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s10701-010-9442-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019940630
    139 https://doi.org/10.1007/s10701-010-9442-2
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s10701-010-9454-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045074803
    142 https://doi.org/10.1007/s10701-010-9454-y
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s11693-011-9081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033541586
    145 https://doi.org/10.1007/s11693-011-9081-8
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1023/a:1025123923519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036899820
    148 https://doi.org/10.1023/a:1025123923519
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1023/a:1026620313483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044316893
    151 https://doi.org/10.1023/a:1026620313483
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1023/b:opsy.0000047567.88377.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051753591
    154 https://doi.org/10.1023/b:opsy.0000047567.88377.74
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1023/b:opsy.0000047570.68941.9d schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901362
    157 https://doi.org/10.1023/b:opsy.0000047570.68941.9d
    158 rdf:type schema:CreativeWork
    159 https://app.dimensions.ai/details/publication/pub.1014599045 schema:CreativeWork
    160 https://app.dimensions.ai/details/publication/pub.1031609612 schema:CreativeWork
    161 https://doi.org/10.1016/0034-4877(89)90034-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429842
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.biosystems.2005.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029121138
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.jmp.2006.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044009508
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.jmp.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025179527
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.physleta.2005.08.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027517521
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.physleta.2010.10.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019144665
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0034-4877(03)90002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024115457
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0960-0779(99)00050-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540711
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1046/j.1365-2443.1996.24025.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044112370
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1063/1.1420743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040900481
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1063/1.1874554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030959761
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1063/1.3567428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098534619
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physreva.65.022305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008645504
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1109/tit.1983.1056719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648898
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1142/9789812793171_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096069381
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1142/9789812793171_0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096069387
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1142/9789812793171_0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096069395
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1142/9789814273756_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098908035
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1142/s1230161209000074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063015506
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1142/s123016120900027x schema:sameAs https://app.dimensions.ai/details/publication/pub.1063015526
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1142/s1230161211000042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063015560
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1209/0295-5075/86/20009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064232477
    204 rdf:type schema:CreativeWork
    205 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
    206 schema:name Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
    207 rdf:type schema:Organization
    208 https://www.grid.ac/institutes/grid.472129.b schema:alternateName National Institute of Technology, Tokuyama College
    209 schema:name Tokuyama College of Technology, Gakuendai, 745-8585, Shunan, Yamaguchi, Japan
    210 rdf:type schema:Organization
    211 https://www.grid.ac/institutes/grid.8148.5 schema:alternateName Linnaeus University
    212 schema:name International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, 35195, Växjö, Sweden
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...