Neutrino Oscillations: Entanglement, Energy-Momentum Conservation and QFT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

E. K. Akhmedov, A. Y. Smirnov

ABSTRACT

We consider several subtle aspects of the theory of neutrino oscillations which have been under discussion recently. We show that the S-matrix formalism of quantum field theory can adequately describe neutrino oscillations if correct physics conditions are imposed. This includes space-time localization of the neutrino production and detection processes. Space-time diagrams are introduced, which characterize this localization and illustrate the coherence issues of neutrino oscillations. We discuss two approaches to calculations of the transition amplitudes, which allow different physics interpretations: (i) using configuration-space wave packets for the involved particles, which leads to approximate conservation laws for their mean energies and momenta; (ii) calculating first a plane-wave amplitude of the process, which exhibits exact energy-momentum conservation, and then convoluting it with the momentum-space wave packets of the involved particles. We show that these two approaches are equivalent. Kinematic entanglement (which is invoked to ensure exact energy-momentum conservation in neutrino oscillations) and subsequent disentanglement of the neutrinos and recoiling states are in fact irrelevant when the wave packets are considered. We demonstrate that the contribution of the recoil particle to the oscillation phase is negligible provided that the coherence conditions for neutrino production and detection are satisfied. Unlike in the previous situation, the phases of both neutrinos from Z0 decay are important, leading to a realization of the Einstein-Podolsky-Rosen paradox. More... »

PAGES

1279-1306

References to SciGraph publications

  • 2009-08. Paradoxes of neutrino oscillations in PHYSICS OF ATOMIC NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10701-011-9545-4

    DOI

    http://dx.doi.org/10.1007/s10701-011-9545-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001619766


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kurchatov Institute", 
              "id": "https://www.grid.ac/institutes/grid.18919.38", 
              "name": [
                "Max-Planck-Institut f\u00fcr Kernphysik, Postfach 103980, 69029, Heidelberg, Germany", 
                "National Research Centre Kurchatov Institute, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akhmedov", 
            "givenName": "E. K.", 
            "id": "sg:person.0654633065.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654633065.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Centre for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.419330.c", 
              "name": [
                "The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smirnov", 
            "givenName": "A. Y.", 
            "id": "sg:person.0771061465.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771061465.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0370-2693(98)01556-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001280281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.47.777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.47.777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-1573(02)00538-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013224106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-1573(02)00538-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013224106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063778809080122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014673206", 
              "https://doi.org/10.1134/s1063778809080122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063778809080122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014673206", 
              "https://doi.org/10.1134/s1063778809080122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.54.3414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028198454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.54.3414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028198454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)80768-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039716634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.4310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046011410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.4310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046011410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.24.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.24.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.4318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.4318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217732310032706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062915126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s021773239200375x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062918900"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-08", 
        "datePublishedReg": "2011-08-01", 
        "description": "We consider several subtle aspects of the theory of neutrino oscillations which have been under discussion recently. We show that the S-matrix formalism of quantum field theory can adequately describe neutrino oscillations if correct physics conditions are imposed. This includes space-time localization of the neutrino production and detection processes. Space-time diagrams are introduced, which characterize this localization and illustrate the coherence issues of neutrino oscillations. We discuss two approaches to calculations of the transition amplitudes, which allow different physics interpretations: (i) using configuration-space wave packets for the involved particles, which leads to approximate conservation laws for their mean energies and momenta; (ii) calculating first a plane-wave amplitude of the process, which exhibits exact energy-momentum conservation, and then convoluting it with the momentum-space wave packets of the involved particles. We show that these two approaches are equivalent. Kinematic entanglement (which is invoked to ensure exact energy-momentum conservation in neutrino oscillations) and subsequent disentanglement of the neutrinos and recoiling states are in fact irrelevant when the wave packets are considered. We demonstrate that the contribution of the recoil particle to the oscillation phase is negligible provided that the coherence conditions for neutrino production and detection are satisfied. Unlike in the previous situation, the phases of both neutrinos from Z0 decay are important, leading to a realization of the Einstein-Podolsky-Rosen paradox.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10701-011-9545-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297335", 
            "issn": [
              "0015-9018", 
              "1572-9516"
            ], 
            "name": "Foundations of Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "name": "Neutrino Oscillations: Entanglement, Energy-Momentum Conservation and QFT", 
        "pagination": "1279-1306", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "07b739179811a10ede109a5d849dd436b6964225bafdb2d7dd48f3810868831b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10701-011-9545-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001619766"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10701-011-9545-4", 
          "https://app.dimensions.ai/details/publication/pub.1001619766"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10701-011-9545-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-011-9545-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-011-9545-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-011-9545-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-011-9545-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10701-011-9545-4 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N7014986cf0424bc3957b2598127a2388
    4 schema:citation sg:pub.10.1134/s1063778809080122
    5 https://doi.org/10.1016/s0370-1573(02)00538-0
    6 https://doi.org/10.1016/s0370-2693(98)01556-1
    7 https://doi.org/10.1016/s0550-3213(97)80768-7
    8 https://doi.org/10.1103/physrev.47.777
    9 https://doi.org/10.1103/physrevd.24.110
    10 https://doi.org/10.1103/physrevd.48.4310
    11 https://doi.org/10.1103/physrevd.48.4318
    12 https://doi.org/10.1103/physrevd.54.3414
    13 https://doi.org/10.1142/s0217732310032706
    14 https://doi.org/10.1142/s021773239200375x
    15 schema:datePublished 2011-08
    16 schema:datePublishedReg 2011-08-01
    17 schema:description We consider several subtle aspects of the theory of neutrino oscillations which have been under discussion recently. We show that the S-matrix formalism of quantum field theory can adequately describe neutrino oscillations if correct physics conditions are imposed. This includes space-time localization of the neutrino production and detection processes. Space-time diagrams are introduced, which characterize this localization and illustrate the coherence issues of neutrino oscillations. We discuss two approaches to calculations of the transition amplitudes, which allow different physics interpretations: (i) using configuration-space wave packets for the involved particles, which leads to approximate conservation laws for their mean energies and momenta; (ii) calculating first a plane-wave amplitude of the process, which exhibits exact energy-momentum conservation, and then convoluting it with the momentum-space wave packets of the involved particles. We show that these two approaches are equivalent. Kinematic entanglement (which is invoked to ensure exact energy-momentum conservation in neutrino oscillations) and subsequent disentanglement of the neutrinos and recoiling states are in fact irrelevant when the wave packets are considered. We demonstrate that the contribution of the recoil particle to the oscillation phase is negligible provided that the coherence conditions for neutrino production and detection are satisfied. Unlike in the previous situation, the phases of both neutrinos from Z0 decay are important, leading to a realization of the Einstein-Podolsky-Rosen paradox.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N03ab4c95ddaa467cb6ecc30d8cd1fc1f
    22 Ndf4a487f0b914ebc883727045bcd003d
    23 sg:journal.1297335
    24 schema:name Neutrino Oscillations: Entanglement, Energy-Momentum Conservation and QFT
    25 schema:pagination 1279-1306
    26 schema:productId N44bf5bbd991c4e9384acdbb146f6e996
    27 Na80c583ad81146e9b80ec6e3fcea29b0
    28 Nca192f0647b142f7ae0df7f02bb61d57
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001619766
    30 https://doi.org/10.1007/s10701-011-9545-4
    31 schema:sdDatePublished 2019-04-10T18:14
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N4b4f66e44d5b4c9ca4b666b325988ad7
    34 schema:url http://link.springer.com/10.1007/s10701-011-9545-4
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N03ab4c95ddaa467cb6ecc30d8cd1fc1f schema:volumeNumber 41
    39 rdf:type schema:PublicationVolume
    40 N44bf5bbd991c4e9384acdbb146f6e996 schema:name dimensions_id
    41 schema:value pub.1001619766
    42 rdf:type schema:PropertyValue
    43 N4b4f66e44d5b4c9ca4b666b325988ad7 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N7014986cf0424bc3957b2598127a2388 rdf:first sg:person.0654633065.35
    46 rdf:rest Nb6bf4d2b5bb24979a1144b3616b12bfc
    47 Na80c583ad81146e9b80ec6e3fcea29b0 schema:name doi
    48 schema:value 10.1007/s10701-011-9545-4
    49 rdf:type schema:PropertyValue
    50 Nb6bf4d2b5bb24979a1144b3616b12bfc rdf:first sg:person.0771061465.70
    51 rdf:rest rdf:nil
    52 Nca192f0647b142f7ae0df7f02bb61d57 schema:name readcube_id
    53 schema:value 07b739179811a10ede109a5d849dd436b6964225bafdb2d7dd48f3810868831b
    54 rdf:type schema:PropertyValue
    55 Ndf4a487f0b914ebc883727045bcd003d schema:issueNumber 8
    56 rdf:type schema:PublicationIssue
    57 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Physical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1297335 schema:issn 0015-9018
    64 1572-9516
    65 schema:name Foundations of Physics
    66 rdf:type schema:Periodical
    67 sg:person.0654633065.35 schema:affiliation https://www.grid.ac/institutes/grid.18919.38
    68 schema:familyName Akhmedov
    69 schema:givenName E. K.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654633065.35
    71 rdf:type schema:Person
    72 sg:person.0771061465.70 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
    73 schema:familyName Smirnov
    74 schema:givenName A. Y.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771061465.70
    76 rdf:type schema:Person
    77 sg:pub.10.1134/s1063778809080122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014673206
    78 https://doi.org/10.1134/s1063778809080122
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/s0370-1573(02)00538-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013224106
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/s0370-2693(98)01556-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001280281
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/s0550-3213(97)80768-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039716634
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physrev.47.777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714864
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physrevd.24.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688949
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1103/physrevd.48.4310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046011410
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1103/physrevd.48.4318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060701625
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1103/physrevd.54.3414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028198454
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1142/s0217732310032706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062915126
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1142/s021773239200375x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918900
    99 rdf:type schema:CreativeWork
    100 https://www.grid.ac/institutes/grid.18919.38 schema:alternateName Kurchatov Institute
    101 schema:name Max-Planck-Institut für Kernphysik, Postfach 103980, 69029, Heidelberg, Germany
    102 National Research Centre Kurchatov Institute, Moscow, Russia
    103 rdf:type schema:Organization
    104 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
    105 schema:name The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...