Quantum Mutual Entropy Defined by Liftings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Satoshi Iriyama, Masanori Ohya

ABSTRACT

A lifting is a map from the state of a system to that of a compound system, which was introduced in Accardi and Ohya (Appl. Math. Optim. 39:33–59, 1999). The lifting can be applied to various physical processes. In this paper, we defined a quantum mutual entropy by the lifting. The usual quantum mutual entropy satisfies the Shannon inequality (Ohya in IEEE Trans. Inf. Theory 29(5):770–774, 1983), but the mutual entropy defined through the lifting does not satisfy this inequality unless some conditions hold. More... »

PAGES

406-413

References to SciGraph publications

Journal

TITLE

Foundations of Physics

ISSUE

3

VOLUME

41

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10701-010-9432-4

    DOI

    http://dx.doi.org/10.1007/s10701-010-9432-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026266496


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tokyo University of Science", 
              "id": "https://www.grid.ac/institutes/grid.143643.7", 
              "name": [
                "Department of Information Sciences, Tokyo University of Science, 2641 Yamasaki, Noda City, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iriyama", 
            "givenName": "Satoshi", 
            "id": "sg:person.015760605365.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760605365.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo University of Science", 
              "id": "https://www.grid.ac/institutes/grid.143643.7", 
              "name": [
                "Department of Information Sciences, Tokyo University of Science, 2641 Yamasaki, Noda City, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohya", 
            "givenName": "Masanori", 
            "id": "sg:person.013365420775.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002459900097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006979639", 
              "https://doi.org/10.1007/s002459900097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1017973450", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-1882-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017973450", 
              "https://doi.org/10.1007/978-94-017-1882-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-1882-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017973450", 
              "https://doi.org/10.1007/978-94-017-1882-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4877(03)90002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024115457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-4877(89)90034-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(84)90076-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049249869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1983.1056719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061648898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219025706002445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062986970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2977/prims/1195191148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070935446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2996/kmj/1138844604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070963743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/trans2/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098740353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/trans2/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098792409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109710137", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57997-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710137", 
              "https://doi.org/10.1007/978-3-642-57997-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57997-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710137", 
              "https://doi.org/10.1007/978-3-642-57997-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-03", 
        "datePublishedReg": "2011-03-01", 
        "description": "A lifting is a map from the state of a system to that of a compound system, which was introduced in Accardi and Ohya (Appl. Math. Optim. 39:33\u201359, 1999). The lifting can be applied to various physical processes. In this paper, we defined a quantum mutual entropy by the lifting. The usual quantum mutual entropy satisfies the Shannon inequality (Ohya in IEEE Trans. Inf. Theory 29(5):770\u2013774, 1983), but the mutual entropy defined through the lifting does not satisfy this inequality unless some conditions hold.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10701-010-9432-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6023228", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1297335", 
            "issn": [
              "0015-9018", 
              "1572-9516"
            ], 
            "name": "Foundations of Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "name": "Quantum Mutual Entropy Defined by Liftings", 
        "pagination": "406-413", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7d2187a8476c7fd1d4a5f0b395a338a595eabe87454aa8f9a9fb652e7685ccff"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10701-010-9432-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026266496"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10701-010-9432-4", 
          "https://app.dimensions.ai/details/publication/pub.1026266496"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000587.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10701-010-9432-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9432-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9432-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9432-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9432-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10701-010-9432-4 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N093a0606b953479c9826fc71b7967569
    4 schema:citation sg:pub.10.1007/978-3-642-57997-4
    5 sg:pub.10.1007/978-94-017-1882-0
    6 sg:pub.10.1007/s002459900097
    7 https://app.dimensions.ai/details/publication/pub.1017973450
    8 https://app.dimensions.ai/details/publication/pub.1109710137
    9 https://doi.org/10.1016/0022-247x(84)90076-3
    10 https://doi.org/10.1016/0034-4877(89)90034-7
    11 https://doi.org/10.1016/s0034-4877(03)90002-4
    12 https://doi.org/10.1090/trans2/012
    13 https://doi.org/10.1090/trans2/033
    14 https://doi.org/10.1109/tit.1983.1056719
    15 https://doi.org/10.1142/s0219025706002445
    16 https://doi.org/10.2977/prims/1195191148
    17 https://doi.org/10.2996/kmj/1138844604
    18 schema:datePublished 2011-03
    19 schema:datePublishedReg 2011-03-01
    20 schema:description A lifting is a map from the state of a system to that of a compound system, which was introduced in Accardi and Ohya (Appl. Math. Optim. 39:33–59, 1999). The lifting can be applied to various physical processes. In this paper, we defined a quantum mutual entropy by the lifting. The usual quantum mutual entropy satisfies the Shannon inequality (Ohya in IEEE Trans. Inf. Theory 29(5):770–774, 1983), but the mutual entropy defined through the lifting does not satisfy this inequality unless some conditions hold.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N7b4cf1d795344dbcb49cb24d17e70497
    25 Na24b20ee960340ad90f69658ed408374
    26 sg:journal.1297335
    27 schema:name Quantum Mutual Entropy Defined by Liftings
    28 schema:pagination 406-413
    29 schema:productId N22b6169cddd3434d80f67a5f21f1e0a8
    30 N716abf2a6fb3409c9272d7d97fd08950
    31 N9676b9039a12439fa5ec29c01a6a9511
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026266496
    33 https://doi.org/10.1007/s10701-010-9432-4
    34 schema:sdDatePublished 2019-04-11T00:28
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N70808df071c3434c87a1ca6105315471
    37 schema:url http://link.springer.com/10.1007/s10701-010-9432-4
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N093a0606b953479c9826fc71b7967569 rdf:first sg:person.015760605365.01
    42 rdf:rest N5f7a879f8bf94d5186407bc63c794f86
    43 N22b6169cddd3434d80f67a5f21f1e0a8 schema:name doi
    44 schema:value 10.1007/s10701-010-9432-4
    45 rdf:type schema:PropertyValue
    46 N5f7a879f8bf94d5186407bc63c794f86 rdf:first sg:person.013365420775.41
    47 rdf:rest rdf:nil
    48 N70808df071c3434c87a1ca6105315471 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N716abf2a6fb3409c9272d7d97fd08950 schema:name dimensions_id
    51 schema:value pub.1026266496
    52 rdf:type schema:PropertyValue
    53 N7b4cf1d795344dbcb49cb24d17e70497 schema:volumeNumber 41
    54 rdf:type schema:PublicationVolume
    55 N9676b9039a12439fa5ec29c01a6a9511 schema:name readcube_id
    56 schema:value 7d2187a8476c7fd1d4a5f0b395a338a595eabe87454aa8f9a9fb652e7685ccff
    57 rdf:type schema:PropertyValue
    58 Na24b20ee960340ad90f69658ed408374 schema:issueNumber 3
    59 rdf:type schema:PublicationIssue
    60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Physical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Quantum Physics
    65 rdf:type schema:DefinedTerm
    66 sg:grant.6023228 http://pending.schema.org/fundedItem sg:pub.10.1007/s10701-010-9432-4
    67 rdf:type schema:MonetaryGrant
    68 sg:journal.1297335 schema:issn 0015-9018
    69 1572-9516
    70 schema:name Foundations of Physics
    71 rdf:type schema:Periodical
    72 sg:person.013365420775.41 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
    73 schema:familyName Ohya
    74 schema:givenName Masanori
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41
    76 rdf:type schema:Person
    77 sg:person.015760605365.01 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
    78 schema:familyName Iriyama
    79 schema:givenName Satoshi
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760605365.01
    81 rdf:type schema:Person
    82 sg:pub.10.1007/978-3-642-57997-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710137
    83 https://doi.org/10.1007/978-3-642-57997-4
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/978-94-017-1882-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017973450
    86 https://doi.org/10.1007/978-94-017-1882-0
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/s002459900097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979639
    89 https://doi.org/10.1007/s002459900097
    90 rdf:type schema:CreativeWork
    91 https://app.dimensions.ai/details/publication/pub.1017973450 schema:CreativeWork
    92 https://app.dimensions.ai/details/publication/pub.1109710137 schema:CreativeWork
    93 https://doi.org/10.1016/0022-247x(84)90076-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049249869
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0034-4877(89)90034-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429842
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/s0034-4877(03)90002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024115457
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1090/trans2/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098792409
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1090/trans2/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740353
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/tit.1983.1056719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648898
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1142/s0219025706002445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062986970
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.2977/prims/1195191148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935446
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.2996/kmj/1138844604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070963743
    110 rdf:type schema:CreativeWork
    111 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
    112 schema:name Department of Information Sciences, Tokyo University of Science, 2641 Yamasaki, Noda City, Chiba, Japan
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...