Dirac Equation with Coupling to 1/r Singular Vector Potentials for all Angular Momenta View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-02-12

AUTHORS

A. D. Alhaidari

ABSTRACT

We consider the Dirac equation in 3+1 dimensions with spherical symmetry and coupling to 1/r singular vector potential. An approximate analytic solution for all angular momenta is obtained. The approximation is made for the 1/r orbital term in the Dirac equation itself not for the traditional and more singular 1/r2 term in the resulting second order differential equation. Consequently, the validity of the solution is for a wider energy spectrum. As examples, we consider the Hulthén and Eckart potentials. More... »

PAGES

1088-1095

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10701-010-9431-5

DOI

http://dx.doi.org/10.1007/s10701-010-9431-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007064427


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia", 
          "id": "http://www.grid.ac/institutes/grid.412135.0", 
          "name": [
            "Saudi Center for Theoretical Physics, Dhahran, Saudi Arabia", 
            "Physics Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alhaidari", 
        "givenName": "A. D.", 
        "id": "sg:person.010122155242.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-11761-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026602992", 
          "https://doi.org/10.1007/978-3-662-11761-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-006-9115-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050500269", 
          "https://doi.org/10.1007/s10910-006-9115-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-008-9867-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021825542", 
          "https://doi.org/10.1007/s10773-008-9867-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02-12", 
    "datePublishedReg": "2010-02-12", 
    "description": "We consider the Dirac equation in 3+1 dimensions with spherical symmetry and coupling to 1/r singular vector potential. An approximate analytic solution for all angular momenta is obtained. The approximation is made for the 1/r orbital term in the Dirac equation itself not for the traditional and more singular 1/r2 term in the resulting second order differential equation. Consequently, the validity of the solution is for a wider energy spectrum. As examples, we consider the Hulth\u00e9n and Eckart potentials.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10701-010-9431-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297335", 
        "issn": [
          "0015-9018", 
          "1572-9516"
        ], 
        "name": "Foundations of Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "singular vector potential", 
      "Dirac equation", 
      "second-order differential equations", 
      "vector potential", 
      "order differential equations", 
      "angular momentum", 
      "approximate analytic solution", 
      "differential equations", 
      "analytic solution", 
      "spherical symmetry", 
      "R2 term", 
      "equations", 
      "wide energy spectrum", 
      "Eckart potential", 
      "energy spectrum", 
      "momentum", 
      "orbital term", 
      "approximation", 
      "solution", 
      "coupling", 
      "symmetry", 
      "Hulth\u00e9n", 
      "terms", 
      "dimensions", 
      "validity", 
      "spectra", 
      "potential", 
      "example"
    ], 
    "name": "Dirac Equation with Coupling to 1/r Singular Vector Potentials for all Angular Momenta", 
    "pagination": "1088-1095", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007064427"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10701-010-9431-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10701-010-9431-5", 
      "https://app.dimensions.ai/details/publication/pub.1007064427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10701-010-9431-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9431-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9431-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9431-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-010-9431-5'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      56 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10701-010-9431-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N83abe53882d641a0b312ae6c7d359f05
4 schema:citation sg:pub.10.1007/978-3-662-11761-3
5 sg:pub.10.1007/s10773-008-9867-y
6 sg:pub.10.1007/s10910-006-9115-8
7 schema:datePublished 2010-02-12
8 schema:datePublishedReg 2010-02-12
9 schema:description We consider the Dirac equation in 3+1 dimensions with spherical symmetry and coupling to 1/r singular vector potential. An approximate analytic solution for all angular momenta is obtained. The approximation is made for the 1/r orbital term in the Dirac equation itself not for the traditional and more singular 1/r2 term in the resulting second order differential equation. Consequently, the validity of the solution is for a wider energy spectrum. As examples, we consider the Hulthén and Eckart potentials.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N0db7847cc55e4132b0d71722229cc6e7
14 Nf8d659a09e094df098d97c836a1cfab2
15 sg:journal.1297335
16 schema:keywords Dirac equation
17 Eckart potential
18 Hulthén
19 R2 term
20 analytic solution
21 angular momentum
22 approximate analytic solution
23 approximation
24 coupling
25 differential equations
26 dimensions
27 energy spectrum
28 equations
29 example
30 momentum
31 orbital term
32 order differential equations
33 potential
34 second-order differential equations
35 singular vector potential
36 solution
37 spectra
38 spherical symmetry
39 symmetry
40 terms
41 validity
42 vector potential
43 wide energy spectrum
44 schema:name Dirac Equation with Coupling to 1/r Singular Vector Potentials for all Angular Momenta
45 schema:pagination 1088-1095
46 schema:productId N79c0dc4881fb438c91454f51cd933ef0
47 Nd9fb8ed41dd441319ccdb819e2c0a6fd
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007064427
49 https://doi.org/10.1007/s10701-010-9431-5
50 schema:sdDatePublished 2022-05-20T07:26
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Na7f661d9454645388cef26821c4302ba
53 schema:url https://doi.org/10.1007/s10701-010-9431-5
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0db7847cc55e4132b0d71722229cc6e7 schema:volumeNumber 40
58 rdf:type schema:PublicationVolume
59 N79c0dc4881fb438c91454f51cd933ef0 schema:name doi
60 schema:value 10.1007/s10701-010-9431-5
61 rdf:type schema:PropertyValue
62 N83abe53882d641a0b312ae6c7d359f05 rdf:first sg:person.010122155242.02
63 rdf:rest rdf:nil
64 Na7f661d9454645388cef26821c4302ba schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nd9fb8ed41dd441319ccdb819e2c0a6fd schema:name dimensions_id
67 schema:value pub.1007064427
68 rdf:type schema:PropertyValue
69 Nf8d659a09e094df098d97c836a1cfab2 schema:issueNumber 8
70 rdf:type schema:PublicationIssue
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:journal.1297335 schema:issn 0015-9018
78 1572-9516
79 schema:name Foundations of Physics
80 schema:publisher Springer Nature
81 rdf:type schema:Periodical
82 sg:person.010122155242.02 schema:affiliation grid-institutes:grid.412135.0
83 schema:familyName Alhaidari
84 schema:givenName A. D.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-662-11761-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026602992
88 https://doi.org/10.1007/978-3-662-11761-3
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s10773-008-9867-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021825542
91 https://doi.org/10.1007/s10773-008-9867-y
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s10910-006-9115-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050500269
94 https://doi.org/10.1007/s10910-006-9115-8
95 rdf:type schema:CreativeWork
96 grid-institutes:grid.412135.0 schema:alternateName Physics Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
97 schema:name Physics Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
98 Saudi Center for Theoretical Physics, Dhahran, Saudi Arabia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...