Extreme Covariant Observables for Type I Symmetry Groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

Alexander S. Holevo, Juha-Pekka Pellonpää

ABSTRACT

The structure of covariant observables—normalized positive operator measures (POMs)—is studied in the case of a type I symmetry group. Such measures are completely determined by kernels which are measurable fields of positive semidefinite sesquilinear forms. We produce the minimal Kolmogorov decompositions for the kernels and determine those which correspond to the extreme covariant observables. Illustrative examples of the extremals in the case of the Abelian symmetry group are given. More... »

PAGES

625-641

References to SciGraph publications

  • 1979-12. On Mackey's imprimitivity theorem in COMMENTARII MATHEMATICI HELVETICI
  • 1984. Covariant measurements and imprimitivity systems in QUANTUM PROBABILITY AND APPLICATIONS TO THE QUANTUM THEORY OF IRREVERSIBLE PROCESSES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10701-009-9274-0

    DOI

    http://dx.doi.org/10.1007/s10701-009-9274-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007202274


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Department of Probability Theory, Steklov Mathematical Institute, Gubkina 8, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holevo", 
            "givenName": "Alexander S.", 
            "id": "sg:person.012742037634.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turku", 
              "id": "https://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "Department of Physics, University of Turku, 20014, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pellonp\u00e4\u00e4", 
            "givenName": "Juha-Pekka", 
            "id": "sg:person.013020016777.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020016777.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.laa.2007.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007986212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1806262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019354867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02566297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022058951", 
              "https://doi.org/10.1007/bf02566297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2940328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030126893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0071720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051577135", 
              "https://doi.org/10.1007/bfb0071720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1777813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057820864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/im1987v028n01abeh000872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058167310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0895479892240683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062882016"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-06", 
        "datePublishedReg": "2009-06-01", 
        "description": "The structure of covariant observables\u2014normalized positive operator measures (POMs)\u2014is studied in the case of a type I symmetry group. Such measures are completely determined by kernels which are measurable fields of positive semidefinite sesquilinear forms. We produce the minimal Kolmogorov decompositions for the kernels and determine those which correspond to the extreme covariant observables. Illustrative examples of the extremals in the case of the Abelian symmetry group are given.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10701-009-9274-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297335", 
            "issn": [
              "0015-9018", 
              "1572-9516"
            ], 
            "name": "Foundations of Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "name": "Extreme Covariant Observables for Type I Symmetry Groups", 
        "pagination": "625-641", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10701-009-9274-0"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "224e12946b92665b07416d828b85ca7bc8b70cbe7db8d84e4d755c211f872746"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007202274"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10701-009-9274-0", 
          "https://app.dimensions.ai/details/publication/pub.1007202274"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56164_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10701-009-9274-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10701-009-9274-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10701-009-9274-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10701-009-9274-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10701-009-9274-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10701-009-9274-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N34b42646c68d4697a06228e3b33bc31f
    4 schema:citation sg:pub.10.1007/bf02566297
    5 sg:pub.10.1007/bfb0071720
    6 https://doi.org/10.1016/j.laa.2007.12.001
    7 https://doi.org/10.1063/1.1777813
    8 https://doi.org/10.1063/1.1806262
    9 https://doi.org/10.1063/1.2940328
    10 https://doi.org/10.1070/im1987v028n01abeh000872
    11 https://doi.org/10.1137/s0895479892240683
    12 schema:datePublished 2009-06
    13 schema:datePublishedReg 2009-06-01
    14 schema:description The structure of covariant observables—normalized positive operator measures (POMs)—is studied in the case of a type I symmetry group. Such measures are completely determined by kernels which are measurable fields of positive semidefinite sesquilinear forms. We produce the minimal Kolmogorov decompositions for the kernels and determine those which correspond to the extreme covariant observables. Illustrative examples of the extremals in the case of the Abelian symmetry group are given.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N2e0ca5da9e814cb3929367fedbcc32ea
    19 N96fdd1f95c7d4ba986f03a1be2ae04da
    20 sg:journal.1297335
    21 schema:name Extreme Covariant Observables for Type I Symmetry Groups
    22 schema:pagination 625-641
    23 schema:productId N8605bf5e12594b79ba8ad0dbc3cdbd5b
    24 Nd92f898baccb464083b6b67c38a7522f
    25 Ne39ce406ac914859b764aad08f0da6d1
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007202274
    27 https://doi.org/10.1007/s10701-009-9274-0
    28 schema:sdDatePublished 2019-04-15T09:13
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N0a869a8e035b444985e7b61b944f184f
    31 schema:url http://link.springer.com/10.1007/s10701-009-9274-0
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N0a869a8e035b444985e7b61b944f184f schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N2e0ca5da9e814cb3929367fedbcc32ea schema:volumeNumber 39
    38 rdf:type schema:PublicationVolume
    39 N34b42646c68d4697a06228e3b33bc31f rdf:first sg:person.012742037634.56
    40 rdf:rest N5d68bbb7ae7442da970901f4b8629dd5
    41 N5d68bbb7ae7442da970901f4b8629dd5 rdf:first sg:person.013020016777.09
    42 rdf:rest rdf:nil
    43 N8605bf5e12594b79ba8ad0dbc3cdbd5b schema:name readcube_id
    44 schema:value 224e12946b92665b07416d828b85ca7bc8b70cbe7db8d84e4d755c211f872746
    45 rdf:type schema:PropertyValue
    46 N96fdd1f95c7d4ba986f03a1be2ae04da schema:issueNumber 6
    47 rdf:type schema:PublicationIssue
    48 Nd92f898baccb464083b6b67c38a7522f schema:name dimensions_id
    49 schema:value pub.1007202274
    50 rdf:type schema:PropertyValue
    51 Ne39ce406ac914859b764aad08f0da6d1 schema:name doi
    52 schema:value 10.1007/s10701-009-9274-0
    53 rdf:type schema:PropertyValue
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1297335 schema:issn 0015-9018
    61 1572-9516
    62 schema:name Foundations of Physics
    63 rdf:type schema:Periodical
    64 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    65 schema:familyName Holevo
    66 schema:givenName Alexander S.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
    68 rdf:type schema:Person
    69 sg:person.013020016777.09 schema:affiliation https://www.grid.ac/institutes/grid.1374.1
    70 schema:familyName Pellonpää
    71 schema:givenName Juha-Pekka
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020016777.09
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf02566297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022058951
    75 https://doi.org/10.1007/bf02566297
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bfb0071720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051577135
    78 https://doi.org/10.1007/bfb0071720
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/j.laa.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007986212
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1063/1.1777813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057820864
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1063/1.1806262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019354867
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1063/1.2940328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030126893
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1070/im1987v028n01abeh000872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058167310
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1137/s0895479892240683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882016
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.1374.1 schema:alternateName University of Turku
    93 schema:name Department of Physics, University of Turku, 20014, Turku, Finland
    94 rdf:type schema:Organization
    95 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    96 schema:name Department of Probability Theory, Steklov Mathematical Institute, Gubkina 8, 119991, Moscow, Russia
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...