Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Shih-Wei Lin, Ching-Jung Ting, Kun-Chih Wu

ABSTRACT

The berth allocation problem is an optimization problem concerning seaside operations at container terminals. This study investigates the dynamic and continuous berth allocation problem (BAP), whose objective is to minimize the total weighted service time and the deviation cost from vessels’ preferred position. The problem is formulated as a mixed integer programming model. Due to that the BAP is NP-hard, two efficient and effective simulated annealing (SA) algorithms are proposed to locate vessels along the quay. The first SA assigns vessels to available positions along the quay from the left to the right, while the second assigns vessels from both sides. Both small and large-scale instances in the literature are tested to evaluate the effectiveness of the proposed SA algorithms using the optimization software Gurobi and heuristic algorithms from the literature. The results indicate that the proposed SAs can provide optimal solutions in small-scale instances and updates the best solutions in large-scale instances. The improvement over other comparing heuristics is statistically significant. More... »

PAGES

1-24

References to SciGraph publications

  • 2008-01. Operations research at container terminals: a literature update in OR SPECTRUM
  • 2004-01. The berth allocation problem: models and solution methods in OR SPECTRUM
  • 2012. Clustering Search Heuristic for Solving a Continuous Berth Allocation Problem in EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION
  • 2008. A Hybrid Column Generation Approach for the Berth Allocation Problem in EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION
  • 2008. Berth Allocation Planning Optimization in Container Terminals in SUPPLY CHAIN ANALYSIS
  • 2015-09. Seaside operations in container terminals: literature overview, trends, and research directions in FLEXIBLE SERVICES AND MANUFACTURING JOURNAL
  • 2007-12. The Berth Allocation Problem with Service Time and Delay Time Objectives in MARITIME ECONOMICS & LOGISTICS
  • 2006-10. Berth management in container terminal: the template design problem in OR SPECTRUM
  • 2002-09. Berth scheduling for container terminals by using a sub-gradient optimization technique in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2010-12. Analysis of the continuous berth allocation problem in container ports using a genetic algorithm in JOURNAL OF MARINE SCIENCE AND TECHNOLOGY
  • 1998-05. Scheduling with multiple-job-on-one-processor pattern in IIE TRANSACTIONS
  • 1999-11-19. Ant Colony Optimization for the Ship Berthing Problem in ADVANCES IN COMPUTING SCIENCE — ASIAN’99
  • 2004-01. Container terminal operation and operations research - a classification and literature review in OR SPECTRUM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10696-017-9298-2

    DOI

    http://dx.doi.org/10.1007/s10696-017-9298-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092227386


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Linkou Chang Gung Memorial Hospital", 
              "id": "https://www.grid.ac/institutes/grid.454211.7", 
              "name": [
                "Department of Information Management, Chang Gung University, Taoyuan, Taiwan, ROC", 
                "Department of Industrial Engineering and Management, Ming Chi University of Technology, Taipei, Taiwan, ROC", 
                "Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Shih-Wei", 
            "id": "sg:person.015224610754.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yuan Ze University", 
              "id": "https://www.grid.ac/institutes/grid.413050.3", 
              "name": [
                "Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan, ROC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ting", 
            "givenName": "Ching-Jung", 
            "id": "sg:person.011643406201.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011643406201.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yuan Ze University", 
              "id": "https://www.grid.ac/institutes/grid.413050.3", 
              "name": [
                "Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan, ROC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Kun-Chih", 
            "id": "sg:person.014176346001.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014176346001.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0191-2615(02)00023-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001135888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-003-0157-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002425151", 
              "https://doi.org/10.1007/s00291-003-0157-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-003-0157-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002425151", 
              "https://doi.org/10.1007/s00291-003-0157-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/atr.5670310107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003818339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/atr.5670310107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003818339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2009.05.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004785026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0305-0483(83)90088-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005417958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0305-0483(83)90088-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005417958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2006.12.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005567000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.08.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007491537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2005.02.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008895944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-006-0036-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010715081", 
              "https://doi.org/10.1007/s00291-006-0036-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-006-0036-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010715081", 
              "https://doi.org/10.1007/s00291-006-0036-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2601412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016431413", 
              "https://doi.org/10.1057/palgrave.jors.2601412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.mel.9100186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020048287", 
              "https://doi.org/10.1057/palgrave.mel.9100186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2012.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020183752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46674-6_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020370649", 
              "https://doi.org/10.1007/3-540-46674-6_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46674-6_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020370649", 
              "https://doi.org/10.1007/3-540-46674-6_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tre.2010.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024807942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-6377(98)00010-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025770190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-003-0140-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025969599", 
              "https://doi.org/10.1007/s00291-003-0140-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trb.2004.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027777038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2006.09.082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029228638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/218925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030321523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tre.2006.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030488185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10696-013-9178-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031687624", 
              "https://doi.org/10.1007/s10696-013-9178-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-007-0100-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033600765", 
              "https://doi.org/10.1007/s00291-007-0100-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-007-0100-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033600765", 
              "https://doi.org/10.1007/s00291-007-0100-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-007-0100-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033600765", 
              "https://doi.org/10.1007/s00291-007-0100-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-29124-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033655923", 
              "https://doi.org/10.1007/978-3-642-29124-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2014.12.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037641154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2016.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041450521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-6377(02)00147-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041550864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-6377(02)00147-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041550864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78604-7_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042272214", 
              "https://doi.org/10.1007/978-3-540-78604-7_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(00)00128-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042817596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0191-2615(02)00027-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043955069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0305215x.2013.768241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044914886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2008.03.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045112580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2015.05.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045187329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07408179808966484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046775624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0191-2615(99)00057-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046819274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026487022192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047831281", 
              "https://doi.org/10.1023/a:1026487022192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dss.2006.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048106686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tre.2010.11.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050052856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2011.08.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051186275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00773-010-0095-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052077624", 
              "https://doi.org/10.1007/s00773-010-0095-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00773-010-0095-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052077624", 
              "https://doi.org/10.1007/s00773-010-0095-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1699114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057769646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.220.4598.671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062526985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.1050.0120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.1060.0171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-75240-2_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086156329", 
              "https://doi.org/10.1007/978-0-387-75240-2_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-75240-2_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086156329", 
              "https://doi.org/10.1007/978-0-387-75240-2_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0003636601050113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099443295"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "The berth allocation problem is an optimization problem concerning seaside operations at container terminals. This study investigates the dynamic and continuous berth allocation problem (BAP), whose objective is to minimize the total weighted service time and the deviation cost from vessels\u2019 preferred position. The problem is formulated as a mixed integer programming model. Due to that the BAP is NP-hard, two efficient and effective simulated annealing (SA) algorithms are proposed to locate vessels along the quay. The first SA assigns vessels to available positions along the quay from the left to the right, while the second assigns vessels from both sides. Both small and large-scale instances in the literature are tested to evaluate the effectiveness of the proposed SA algorithms using the optimization software Gurobi and heuristic algorithms from the literature. The results indicate that the proposed SAs can provide optimal solutions in small-scale instances and updates the best solutions in large-scale instances. The improvement over other comparing heuristics is statistically significant.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10696-017-9298-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136754", 
            "issn": [
              "0920-6299", 
              "1936-6582"
            ], 
            "name": "Flexible Services and Manufacturing Journal", 
            "type": "Periodical"
          }
        ], 
        "name": "Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem", 
        "pagination": "1-24", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aea77c9b098d15df64fae04265f1fdb51aee776ed53f847dc4d101718990d852"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10696-017-9298-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092227386"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10696-017-9298-2", 
          "https://app.dimensions.ai/details/publication/pub.1092227386"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000601.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10696-017-9298-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10696-017-9298-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10696-017-9298-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10696-017-9298-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10696-017-9298-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      21 PREDICATES      70 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10696-017-9298-2 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N201a008922f94f609e38f2d21668c962
    4 schema:citation sg:pub.10.1007/3-540-46674-6_30
    5 sg:pub.10.1007/978-0-387-75240-2_4
    6 sg:pub.10.1007/978-3-540-78604-7_10
    7 sg:pub.10.1007/978-3-642-29124-1_5
    8 sg:pub.10.1007/s00291-003-0140-8
    9 sg:pub.10.1007/s00291-003-0157-z
    10 sg:pub.10.1007/s00291-006-0036-5
    11 sg:pub.10.1007/s00291-007-0100-9
    12 sg:pub.10.1007/s00773-010-0095-9
    13 sg:pub.10.1007/s10696-013-9178-3
    14 sg:pub.10.1023/a:1026487022192
    15 sg:pub.10.1057/palgrave.jors.2601412
    16 sg:pub.10.1057/palgrave.mel.9100186
    17 https://doi.org/10.1002/atr.5670310107
    18 https://doi.org/10.1016/0305-0483(83)90088-9
    19 https://doi.org/10.1016/j.amc.2006.09.082
    20 https://doi.org/10.1016/j.cor.2005.02.021
    21 https://doi.org/10.1016/j.cor.2016.01.002
    22 https://doi.org/10.1016/j.dss.2006.06.008
    23 https://doi.org/10.1016/j.ejor.2006.12.057
    24 https://doi.org/10.1016/j.ejor.2008.03.021
    25 https://doi.org/10.1016/j.ejor.2009.05.031
    26 https://doi.org/10.1016/j.ejor.2011.08.024
    27 https://doi.org/10.1016/j.ejor.2014.12.030
    28 https://doi.org/10.1016/j.engappai.2012.06.001
    29 https://doi.org/10.1016/j.eswa.2013.08.051
    30 https://doi.org/10.1016/j.eswa.2015.05.018
    31 https://doi.org/10.1016/j.trb.2004.04.004
    32 https://doi.org/10.1016/j.tre.2006.05.002
    33 https://doi.org/10.1016/j.tre.2010.01.009
    34 https://doi.org/10.1016/j.tre.2010.11.016
    35 https://doi.org/10.1016/s0167-6377(02)00147-5
    36 https://doi.org/10.1016/s0167-6377(98)00010-8
    37 https://doi.org/10.1016/s0191-2615(02)00023-1
    38 https://doi.org/10.1016/s0191-2615(02)00027-9
    39 https://doi.org/10.1016/s0191-2615(99)00057-0
    40 https://doi.org/10.1016/s0377-2217(00)00128-4
    41 https://doi.org/10.1063/1.1699114
    42 https://doi.org/10.1080/0305215x.2013.768241
    43 https://doi.org/10.1080/07408179808966484
    44 https://doi.org/10.1126/science.220.4598.671
    45 https://doi.org/10.1155/2014/218925
    46 https://doi.org/10.1287/trsc.1050.0120
    47 https://doi.org/10.1287/trsc.1060.0171
    48 https://doi.org/10.5220/0003636601050113
    49 schema:datePublished 2018-12
    50 schema:datePublishedReg 2018-12-01
    51 schema:description The berth allocation problem is an optimization problem concerning seaside operations at container terminals. This study investigates the dynamic and continuous berth allocation problem (BAP), whose objective is to minimize the total weighted service time and the deviation cost from vessels’ preferred position. The problem is formulated as a mixed integer programming model. Due to that the BAP is NP-hard, two efficient and effective simulated annealing (SA) algorithms are proposed to locate vessels along the quay. The first SA assigns vessels to available positions along the quay from the left to the right, while the second assigns vessels from both sides. Both small and large-scale instances in the literature are tested to evaluate the effectiveness of the proposed SA algorithms using the optimization software Gurobi and heuristic algorithms from the literature. The results indicate that the proposed SAs can provide optimal solutions in small-scale instances and updates the best solutions in large-scale instances. The improvement over other comparing heuristics is statistically significant.
    52 schema:genre research_article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree false
    55 schema:isPartOf sg:journal.1136754
    56 schema:name Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem
    57 schema:pagination 1-24
    58 schema:productId N522469d5e70c4c2887e0b2a73cf233c8
    59 Nbb1f242e206144f08103c36a7276e0fd
    60 Nd4a4b086254e45c0a3eb28d5dc86ee4e
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092227386
    62 https://doi.org/10.1007/s10696-017-9298-2
    63 schema:sdDatePublished 2019-04-10T22:47
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N696c093e76334b348762515efbc4a68b
    66 schema:url https://link.springer.com/10.1007%2Fs10696-017-9298-2
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N0453fc5567a0497aae2ca6abd14c152f rdf:first sg:person.011643406201.70
    71 rdf:rest N62801350003f4d709def4575394dc302
    72 N201a008922f94f609e38f2d21668c962 rdf:first sg:person.015224610754.94
    73 rdf:rest N0453fc5567a0497aae2ca6abd14c152f
    74 N522469d5e70c4c2887e0b2a73cf233c8 schema:name doi
    75 schema:value 10.1007/s10696-017-9298-2
    76 rdf:type schema:PropertyValue
    77 N62801350003f4d709def4575394dc302 rdf:first sg:person.014176346001.04
    78 rdf:rest rdf:nil
    79 N696c093e76334b348762515efbc4a68b schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Nbb1f242e206144f08103c36a7276e0fd schema:name readcube_id
    82 schema:value aea77c9b098d15df64fae04265f1fdb51aee776ed53f847dc4d101718990d852
    83 rdf:type schema:PropertyValue
    84 Nd4a4b086254e45c0a3eb28d5dc86ee4e schema:name dimensions_id
    85 schema:value pub.1092227386
    86 rdf:type schema:PropertyValue
    87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Information and Computing Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Computation Theory and Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1136754 schema:issn 0920-6299
    94 1936-6582
    95 schema:name Flexible Services and Manufacturing Journal
    96 rdf:type schema:Periodical
    97 sg:person.011643406201.70 schema:affiliation https://www.grid.ac/institutes/grid.413050.3
    98 schema:familyName Ting
    99 schema:givenName Ching-Jung
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011643406201.70
    101 rdf:type schema:Person
    102 sg:person.014176346001.04 schema:affiliation https://www.grid.ac/institutes/grid.413050.3
    103 schema:familyName Wu
    104 schema:givenName Kun-Chih
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014176346001.04
    106 rdf:type schema:Person
    107 sg:person.015224610754.94 schema:affiliation https://www.grid.ac/institutes/grid.454211.7
    108 schema:familyName Lin
    109 schema:givenName Shih-Wei
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94
    111 rdf:type schema:Person
    112 sg:pub.10.1007/3-540-46674-6_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020370649
    113 https://doi.org/10.1007/3-540-46674-6_30
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-0-387-75240-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086156329
    116 https://doi.org/10.1007/978-0-387-75240-2_4
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-540-78604-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042272214
    119 https://doi.org/10.1007/978-3-540-78604-7_10
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-29124-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033655923
    122 https://doi.org/10.1007/978-3-642-29124-1_5
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s00291-003-0140-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025969599
    125 https://doi.org/10.1007/s00291-003-0140-8
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s00291-003-0157-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002425151
    128 https://doi.org/10.1007/s00291-003-0157-z
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00291-006-0036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010715081
    131 https://doi.org/10.1007/s00291-006-0036-5
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00291-007-0100-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033600765
    134 https://doi.org/10.1007/s00291-007-0100-9
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s00773-010-0095-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052077624
    137 https://doi.org/10.1007/s00773-010-0095-9
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s10696-013-9178-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031687624
    140 https://doi.org/10.1007/s10696-013-9178-3
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1023/a:1026487022192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047831281
    143 https://doi.org/10.1023/a:1026487022192
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1057/palgrave.jors.2601412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016431413
    146 https://doi.org/10.1057/palgrave.jors.2601412
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1057/palgrave.mel.9100186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020048287
    149 https://doi.org/10.1057/palgrave.mel.9100186
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1002/atr.5670310107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003818339
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/0305-0483(83)90088-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005417958
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.amc.2006.09.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029228638
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.cor.2005.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008895944
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.cor.2016.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041450521
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.dss.2006.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048106686
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.ejor.2006.12.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005567000
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.ejor.2008.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045112580
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.ejor.2009.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004785026
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.ejor.2011.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051186275
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.ejor.2014.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037641154
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.engappai.2012.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020183752
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.eswa.2013.08.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007491537
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.eswa.2015.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045187329
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.trb.2004.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027777038
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.tre.2006.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030488185
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.tre.2010.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024807942
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.tre.2010.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050052856
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/s0167-6377(02)00147-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041550864
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/s0167-6377(98)00010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025770190
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/s0191-2615(02)00023-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001135888
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/s0191-2615(02)00027-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043955069
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/s0191-2615(99)00057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046819274
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/s0377-2217(00)00128-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042817596
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1080/0305215x.2013.768241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044914886
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1080/07408179808966484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046775624
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1155/2014/218925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030321523
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1287/trsc.1050.0120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734157
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1287/trsc.1060.0171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734207
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.5220/0003636601050113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099443295
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.413050.3 schema:alternateName Yuan Ze University
    216 schema:name Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan, ROC
    217 rdf:type schema:Organization
    218 https://www.grid.ac/institutes/grid.454211.7 schema:alternateName Linkou Chang Gung Memorial Hospital
    219 schema:name Department of Industrial Engineering and Management, Ming Chi University of Technology, Taipei, Taiwan, ROC
    220 Department of Information Management, Chang Gung University, Taoyuan, Taiwan, ROC
    221 Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...