Soot Production and Radiative Heat Transfer in Opposed Flame Spread over a Polyethylene Insulated Wire in Microgravity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

A. Guibaud, J. L. Consalvi, J. M. Orlac’h, J. M. Citerne, G. Legros

ABSTRACT

Flame spread over an insulated electrical wire is identified as a fire scenario in space vehicles. In such microgravity configurations, the contribution of thermal radiation from gaseous participating species and soot to the wire burning rate and flame spread is not fully understood and the present paper addresses this question both experimentally and numerically. A non-buoyant opposed-flow flame spread configuration over a nickel–chrome wire coated by Low Density PolyEthylene (LDPE) is considered with an O2/N2 oxidizer composed of 19% of oxygen in volume and a flow velocity of 200 mm/s. Flame spread rate, pyrolysis rate, stand-off distance, soot volume fraction, and soot temperature are experimentally determined based on optical diagnostics that capture the flame spread in parabolic flights. The numerical model uses the measured spread and pyrolysis rates as input data and solves transport equations for mass, momentum, species, energy, and soot number density and mass fraction in an axisymmetric flame-fixed coordinate system in conjunction with a simple degradation model for the LDPE and a state-of-the-art radiation model. The model considers two assumptions. First, pure ethylene results from the decomposition of LDPE and, second, an acetylene/benzene based-soot model, initially validated for C1–C3 hydrocarbons, can be extended with minor modifications to model soot production of LDPE. Comparisons between model predictions and experimental data in terms of flame structure and soot volume fraction support these assumptions. The major finding of this study is that radiation contributes negatively to the surface heat balance along the LDPE molten surface and the coating ahead of the molten front. This shows that the convective heat transfer from the flame is the main contribution to sustain the pyrolysis process and the flame spread is mainly ensured owing to the combined contribution of convection from flame and conduction inside the condensed phase. The maximum incident radiative flux along the molten ball is 17.5 kW/m2 and is reached at the molten ball trailing edge whereas the radiant fraction is about 0.25. Neglecting flame self-absorption affects these values by less than 5%, showing that the optically-thin approximation is valid for this flame. In addition, soot radiation dominates the radiative heat transfer in this flame, contributing for about two-third of the total radiation. Finally, model results show that the usually-used thermally-thin assumption throughout the LDPE coating is not strictly valid. More... »

PAGES

1-28

References to SciGraph publications

  • 2016. Combustion Characteristics of Materials and Generation of Fire Products in SFPE HANDBOOK OF FIRE PROTECTION ENGINEERING
  • 1994. Simplified Soot Nucleation and Surface Growth Steps for Non-Premixed Flames in SOOT FORMATION IN COMBUSTION
  • 2016. Diffusion Flames in SFPE HANDBOOK OF FIRE PROTECTION ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10694-019-00850-8

    DOI

    http://dx.doi.org/10.1007/s10694-019-00850-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113088076


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "CNRS, UMR 7190, Institut Jean Le Rond d\u2019Alembert, Sorbonne Universit\u00e9, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guibaud", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aix-Marseille University", 
              "id": "https://www.grid.ac/institutes/grid.5399.6", 
              "name": [
                "IUSTI/UMR CNRS 7343, Aix-Marseille Universit\u00e9, 5 rue E. Fermi, 13453, Marseille Cedex 13, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Consalvi", 
            "givenName": "J. L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "CNRS, UMR 7190, Institut Jean Le Rond d\u2019Alembert, Sorbonne Universit\u00e9, 75005, Paris, France", 
                "Laboratoire EM2C, CNRS, Centrale Sup\u00e9lec, Universit\u00e9 Paris-Saclay, Grande Voie des Vignes, 92295, Ch\u00e2tenay-Malabry Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orlac\u2019h", 
            "givenName": "J. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "CNRS, UMR 7190, Institut Jean Le Rond d\u2019Alembert, Sorbonne Universit\u00e9, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Citerne", 
            "givenName": "J. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "CNRS, UMR 7190, Institut Jean Le Rond d\u2019Alembert, Sorbonne Universit\u00e9, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Legros", 
            "givenName": "G.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0010-2180(86)90004-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000049868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-2180(86)90004-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000049868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-85167-4_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001412527", 
              "https://doi.org/10.1007/978-3-642-85167-4_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jqsrt.2004.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001592414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.combustflame.2005.10.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001676953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.19560360105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002432943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00102200600805850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002857143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2565-0_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003836998", 
              "https://doi.org/10.1007/978-1-4939-2565-0_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2006.07.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007437190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymdegradstab.2012.08.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008310869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-012503163-9/50023-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009897415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2016.09.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011544988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2016.09.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011544988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2016.06.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011775401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2016.06.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011775401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-08-009707-7.50026-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012526249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2565-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015085022", 
              "https://doi.org/10.1007/978-1-4939-2565-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2008.06.179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015575674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0082-0784(85)80659-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016184516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0082-0784(00)80565-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017334965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00102200500271344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019626302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1540-7489(02)80314-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021721304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.firesaf.2015.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024713885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2012.06.158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027016538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.11540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030347851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10407790590919234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033555757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2006.08.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036298620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/13647830903342527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036459931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1540-7489(02)80310-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036907272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2014.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039393701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0082-0784(98)80102-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040204047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jqsrt.2010.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044207941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2014.05.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045842327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.1999-439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046454091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00102207908946878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047549594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1990.0107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050783050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actaastro.2015.12.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052005619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100862a021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055683080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1418697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062069671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3801/iafss.fss.8-637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071436261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.combustflame.2017.12.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100792537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2018.06.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106337601"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-29", 
        "datePublishedReg": "2019-03-29", 
        "description": "Flame spread over an insulated electrical wire is identified as a fire scenario in space vehicles. In such microgravity configurations, the contribution of thermal radiation from gaseous participating species and soot to the wire burning rate and flame spread is not fully understood and the present paper addresses this question both experimentally and numerically. A non-buoyant opposed-flow flame spread configuration over a nickel\u2013chrome wire coated by Low Density PolyEthylene (LDPE) is considered with an O2/N2 oxidizer composed of 19% of oxygen in volume and a flow velocity of 200 mm/s. Flame spread rate, pyrolysis rate, stand-off distance, soot volume fraction, and soot temperature are experimentally determined based on optical diagnostics that capture the flame spread in parabolic flights. The numerical model uses the measured spread and pyrolysis rates as input data and solves transport equations for mass, momentum, species, energy, and soot number density and mass fraction in an axisymmetric flame-fixed coordinate system in conjunction with a simple degradation model for the LDPE and a state-of-the-art radiation model. The model considers two assumptions. First, pure ethylene results from the decomposition of LDPE and, second, an acetylene/benzene based-soot model, initially validated for C1\u2013C3 hydrocarbons, can be extended with minor modifications to model soot production of LDPE. Comparisons between model predictions and experimental data in terms of flame structure and soot volume fraction support these assumptions. The major finding of this study is that radiation contributes negatively to the surface heat balance along the LDPE molten surface and the coating ahead of the molten front. This shows that the convective heat transfer from the flame is the main contribution to sustain the pyrolysis process and the flame spread is mainly ensured owing to the combined contribution of convection from flame and conduction inside the condensed phase. The maximum incident radiative flux along the molten ball is 17.5 kW/m2 and is reached at the molten ball trailing edge whereas the radiant fraction is about 0.25. Neglecting flame self-absorption affects these values by less than 5%, showing that the optically-thin approximation is valid for this flame. In addition, soot radiation dominates the radiative heat transfer in this flame, contributing for about two-third of the total radiation. Finally, model results show that the usually-used thermally-thin assumption throughout the LDPE coating is not strictly valid.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10694-019-00850-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1122008", 
            "issn": [
              "0015-2684", 
              "1572-8099"
            ], 
            "name": "Fire Technology", 
            "type": "Periodical"
          }
        ], 
        "name": "Soot Production and Radiative Heat Transfer in Opposed Flame Spread over a Polyethylene Insulated Wire in Microgravity", 
        "pagination": "1-28", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2599ae7e65ac5586ba68f6c96287e9df8b446f780ed7215487f66319b76ab1b7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10694-019-00850-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113088076"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10694-019-00850-8", 
          "https://app.dimensions.ai/details/publication/pub.1113088076"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68975_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10694-019-00850-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00850-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00850-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00850-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00850-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      21 PREDICATES      63 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10694-019-00850-8 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nc2b88a7363af48d998f5c697edb5096c
    4 schema:citation sg:pub.10.1007/978-1-4939-2565-0_11
    5 sg:pub.10.1007/978-1-4939-2565-0_36
    6 sg:pub.10.1007/978-3-642-85167-4_24
    7 https://doi.org/10.1002/zamm.19560360105
    8 https://doi.org/10.1016/0010-2180(86)90004-0
    9 https://doi.org/10.1016/b978-0-08-009707-7.50026-1
    10 https://doi.org/10.1016/b978-012503163-9/50023-0
    11 https://doi.org/10.1016/j.actaastro.2015.12.021
    12 https://doi.org/10.1016/j.combustflame.2005.10.016
    13 https://doi.org/10.1016/j.combustflame.2017.12.013
    14 https://doi.org/10.1016/j.firesaf.2015.03.005
    15 https://doi.org/10.1016/j.jqsrt.2004.03.007
    16 https://doi.org/10.1016/j.jqsrt.2010.05.001
    17 https://doi.org/10.1016/j.polymdegradstab.2012.08.021
    18 https://doi.org/10.1016/j.proci.2006.07.016
    19 https://doi.org/10.1016/j.proci.2006.08.031
    20 https://doi.org/10.1016/j.proci.2008.06.179
    21 https://doi.org/10.1016/j.proci.2012.06.158
    22 https://doi.org/10.1016/j.proci.2014.05.038
    23 https://doi.org/10.1016/j.proci.2014.09.003
    24 https://doi.org/10.1016/j.proci.2016.06.065
    25 https://doi.org/10.1016/j.proci.2016.09.021
    26 https://doi.org/10.1016/j.proci.2018.06.199
    27 https://doi.org/10.1016/s0082-0784(00)80565-2
    28 https://doi.org/10.1016/s0082-0784(85)80659-7
    29 https://doi.org/10.1016/s0082-0784(98)80102-1
    30 https://doi.org/10.1016/s1540-7489(02)80310-8
    31 https://doi.org/10.1016/s1540-7489(02)80314-5
    32 https://doi.org/10.1021/j100862a021
    33 https://doi.org/10.1080/00102200500271344
    34 https://doi.org/10.1080/00102200600805850
    35 https://doi.org/10.1080/00102207908946878
    36 https://doi.org/10.1080/10407790590919234
    37 https://doi.org/10.1080/13647830903342527
    38 https://doi.org/10.1098/rspa.1990.0107
    39 https://doi.org/10.1115/1.1418697
    40 https://doi.org/10.2514/3.11540
    41 https://doi.org/10.2514/6.1999-439
    42 https://doi.org/10.3801/iafss.fss.8-637
    43 schema:datePublished 2019-03-29
    44 schema:datePublishedReg 2019-03-29
    45 schema:description Flame spread over an insulated electrical wire is identified as a fire scenario in space vehicles. In such microgravity configurations, the contribution of thermal radiation from gaseous participating species and soot to the wire burning rate and flame spread is not fully understood and the present paper addresses this question both experimentally and numerically. A non-buoyant opposed-flow flame spread configuration over a nickel–chrome wire coated by Low Density PolyEthylene (LDPE) is considered with an O2/N2 oxidizer composed of 19% of oxygen in volume and a flow velocity of 200 mm/s. Flame spread rate, pyrolysis rate, stand-off distance, soot volume fraction, and soot temperature are experimentally determined based on optical diagnostics that capture the flame spread in parabolic flights. The numerical model uses the measured spread and pyrolysis rates as input data and solves transport equations for mass, momentum, species, energy, and soot number density and mass fraction in an axisymmetric flame-fixed coordinate system in conjunction with a simple degradation model for the LDPE and a state-of-the-art radiation model. The model considers two assumptions. First, pure ethylene results from the decomposition of LDPE and, second, an acetylene/benzene based-soot model, initially validated for C1–C3 hydrocarbons, can be extended with minor modifications to model soot production of LDPE. Comparisons between model predictions and experimental data in terms of flame structure and soot volume fraction support these assumptions. The major finding of this study is that radiation contributes negatively to the surface heat balance along the LDPE molten surface and the coating ahead of the molten front. This shows that the convective heat transfer from the flame is the main contribution to sustain the pyrolysis process and the flame spread is mainly ensured owing to the combined contribution of convection from flame and conduction inside the condensed phase. The maximum incident radiative flux along the molten ball is 17.5 kW/m2 and is reached at the molten ball trailing edge whereas the radiant fraction is about 0.25. Neglecting flame self-absorption affects these values by less than 5%, showing that the optically-thin approximation is valid for this flame. In addition, soot radiation dominates the radiative heat transfer in this flame, contributing for about two-third of the total radiation. Finally, model results show that the usually-used thermally-thin assumption throughout the LDPE coating is not strictly valid.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf sg:journal.1122008
    50 schema:name Soot Production and Radiative Heat Transfer in Opposed Flame Spread over a Polyethylene Insulated Wire in Microgravity
    51 schema:pagination 1-28
    52 schema:productId N6b9028c349d940169076888b57cf486e
    53 N9ea8433266dd4fd6964a385d6382b3b9
    54 Nb550a4b7314548cdb9f532a51b60cdd2
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113088076
    56 https://doi.org/10.1007/s10694-019-00850-8
    57 schema:sdDatePublished 2019-04-11T13:25
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N8af416112e0b48cab5b7eac6290b7711
    60 schema:url https://link.springer.com/10.1007%2Fs10694-019-00850-8
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N0bba6176a5f7469183cf567c259545d6 rdf:first N286c0ccd21b34fdf8763fe7663e00abd
    65 rdf:rest N217970a2ff114571b50635fb005bbfe0
    66 N217970a2ff114571b50635fb005bbfe0 rdf:first N61a557769abf4bf58629d85f2d1ce964
    67 rdf:rest N77c73b65b34b452dac3b060ea3094cc6
    68 N286c0ccd21b34fdf8763fe7663e00abd schema:affiliation https://www.grid.ac/institutes/grid.5399.6
    69 schema:familyName Consalvi
    70 schema:givenName J. L.
    71 rdf:type schema:Person
    72 N61a557769abf4bf58629d85f2d1ce964 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    73 schema:familyName Orlac’h
    74 schema:givenName J. M.
    75 rdf:type schema:Person
    76 N6b9028c349d940169076888b57cf486e schema:name doi
    77 schema:value 10.1007/s10694-019-00850-8
    78 rdf:type schema:PropertyValue
    79 N77c73b65b34b452dac3b060ea3094cc6 rdf:first Nb53c25a15f914ddd8a66dc1590b5f942
    80 rdf:rest N89dca000219443bd9de182d89360d0d5
    81 N89dca000219443bd9de182d89360d0d5 rdf:first Nb1952efdc22f47eba68b3be9db6e8049
    82 rdf:rest rdf:nil
    83 N8af416112e0b48cab5b7eac6290b7711 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N8de73792a1de4f99ab77cadeeeeb5a41 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    86 schema:familyName Guibaud
    87 schema:givenName A.
    88 rdf:type schema:Person
    89 N9ea8433266dd4fd6964a385d6382b3b9 schema:name readcube_id
    90 schema:value 2599ae7e65ac5586ba68f6c96287e9df8b446f780ed7215487f66319b76ab1b7
    91 rdf:type schema:PropertyValue
    92 Nb1952efdc22f47eba68b3be9db6e8049 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    93 schema:familyName Legros
    94 schema:givenName G.
    95 rdf:type schema:Person
    96 Nb53c25a15f914ddd8a66dc1590b5f942 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    97 schema:familyName Citerne
    98 schema:givenName J. M.
    99 rdf:type schema:Person
    100 Nb550a4b7314548cdb9f532a51b60cdd2 schema:name dimensions_id
    101 schema:value pub.1113088076
    102 rdf:type schema:PropertyValue
    103 Nc2b88a7363af48d998f5c697edb5096c rdf:first N8de73792a1de4f99ab77cadeeeeb5a41
    104 rdf:rest N0bba6176a5f7469183cf567c259545d6
    105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Engineering
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Interdisciplinary Engineering
    110 rdf:type schema:DefinedTerm
    111 sg:journal.1122008 schema:issn 0015-2684
    112 1572-8099
    113 schema:name Fire Technology
    114 rdf:type schema:Periodical
    115 sg:pub.10.1007/978-1-4939-2565-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015085022
    116 https://doi.org/10.1007/978-1-4939-2565-0_11
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-1-4939-2565-0_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003836998
    119 https://doi.org/10.1007/978-1-4939-2565-0_36
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-85167-4_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001412527
    122 https://doi.org/10.1007/978-3-642-85167-4_24
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/zamm.19560360105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002432943
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0010-2180(86)90004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000049868
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/b978-0-08-009707-7.50026-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012526249
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/b978-012503163-9/50023-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009897415
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.actaastro.2015.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052005619
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.combustflame.2005.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001676953
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.combustflame.2017.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100792537
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.firesaf.2015.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024713885
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.jqsrt.2004.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001592414
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.jqsrt.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044207941
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.polymdegradstab.2012.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008310869
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.proci.2006.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007437190
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.proci.2006.08.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036298620
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.proci.2008.06.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015575674
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.proci.2012.06.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027016538
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.proci.2014.05.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045842327
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.proci.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039393701
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.proci.2016.06.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011775401
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.proci.2016.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011544988
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.proci.2018.06.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106337601
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/s0082-0784(00)80565-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017334965
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/s0082-0784(85)80659-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016184516
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0082-0784(98)80102-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040204047
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s1540-7489(02)80310-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036907272
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s1540-7489(02)80314-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021721304
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1021/j100862a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055683080
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1080/00102200500271344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019626302
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1080/00102200600805850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002857143
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1080/00102207908946878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047549594
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1080/10407790590919234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033555757
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1080/13647830903342527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036459931
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1098/rspa.1990.0107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050783050
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1115/1.1418697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062069671
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.2514/3.11540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030347851
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.2514/6.1999-439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046454091
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.3801/iafss.fss.8-637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071436261
    195 rdf:type schema:CreativeWork
    196 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    197 schema:name CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, Sorbonne Université, 75005, Paris, France
    198 Laboratoire EM2C, CNRS, Centrale Supélec, Université Paris-Saclay, Grande Voie des Vignes, 92295, Châtenay-Malabry Cedex, France
    199 rdf:type schema:Organization
    200 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
    201 schema:name IUSTI/UMR CNRS 7343, Aix-Marseille Université, 5 rue E. Fermi, 13453, Marseille Cedex 13, France
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...