Temperature and Motion Tracking of Metal Spark Sprays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Yudong Liu, James L. Urban, Chuanlong Xu, Carlos Fernandez-Pello

ABSTRACT

The temperature, velocity, and size of hot metal sparks are essential to understanding their ability to ignite flammable materials. However, existing measurement methods have limitations to achieve detailed, in situ measurements of these parameters. This paper describes a methodology that combines color-ratio pyrometry and particle streak tracing velocimetry, together with digital image processing to obtain non-intrusive measurements of the temperature, velocity, and size of multiple sparks in a spray. Furthermore, these measurements can be performed using a properly calibrated commercially available color digital camera. The principle of the measurement is firstly introduced, and the repeatability and accuracy of the method are validated via a designed experiment. Then the method is performed to measure the temperature and velocity of metal (steel) sparks in sprays generated by abrasive cutting. Measurements of initial spark temperatures and velocities are reported, as well as the evolution of the temperature and velocity along the flight path of the sparks. Observed initial spark temperature in this work mostly ranged within 1500°C to 1700°C. Results show evidence of both melting and oxidation of the sparks. Different blade speeds are used to understand their effect on spark velocity and temperature. The results of this study can be used as input parameters for spark oxidation and transport models, which in turn can be used to assess the hazards of spark sprays in wildland spot fires, ignition, explosions of flammable gaseous mixtures and dust clouds, and for monitoring and optimizing the material processes such as thermal-spray coating. More... »

PAGES

1-27

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-019-00847-3

DOI

http://dx.doi.org/10.1007/s10694-019-00847-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113174355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 210096, Nanjing, Jiangsu, People\u2019s Republic of China", 
            "Combustion Fire Processes Laboratory, Department of Mechanical Engineering, University of California Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yudong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Combustion Fire Processes Laboratory, Department of Mechanical Engineering, University of California Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Urban", 
        "givenName": "James L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 210096, Nanjing, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Chuanlong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Combustion Fire Processes Laboratory, Department of Mechanical Engineering, University of California Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fernandez-Pello", 
        "givenName": "Carlos", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.proci.2010.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001654634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0010508216060095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591277", 
          "https://doi.org/10.1134/s0010508216060095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0010508216060095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591277", 
          "https://doi.org/10.1134/s0010508216060095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00102202.2014.935612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011940125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013326137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105996301770349556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023752642", 
          "https://doi.org/10.1361/105996301770349556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.11677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025437708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2012.01.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026899560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2014.05.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027045018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00102202.2014.973953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032605997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(65)90025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040970021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(65)90025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040970021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-015-0518-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042890883", 
          "https://doi.org/10.1007/s10694-015-0518-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-015-0518-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042890883", 
          "https://doi.org/10.1007/s10694-015-0518-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0379-7112(97)00050-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043154809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2012.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045079356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/wf16096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048433397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2014.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049514838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2016.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051472527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023685905159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051821586", 
          "https://doi.org/10.1023/a:1023685905159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0734904115611820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063844900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0734904115611820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063844900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.54.004049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065132007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.54.004916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065132123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2017.2772899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092674374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.01.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100725813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0712-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101405541", 
          "https://doi.org/10.1007/s10694-018-0712-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0712-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101405541", 
          "https://doi.org/10.1007/s10694-018-0712-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0712-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101405541", 
          "https://doi.org/10.1007/s10694-018-0712-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.combustflame.2018.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101624800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103205634", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119417989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103205634"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "The temperature, velocity, and size of hot metal sparks are essential to understanding their ability to ignite flammable materials. However, existing measurement methods have limitations to achieve detailed, in situ measurements of these parameters. This paper describes a methodology that combines color-ratio pyrometry and particle streak tracing velocimetry, together with digital image processing to obtain non-intrusive measurements of the temperature, velocity, and size of multiple sparks in a spray. Furthermore, these measurements can be performed using a properly calibrated commercially available color digital camera. The principle of the measurement is firstly introduced, and the repeatability and accuracy of the method are validated via a designed experiment. Then the method is performed to measure the temperature and velocity of metal (steel) sparks in sprays generated by abrasive cutting. Measurements of initial spark temperatures and velocities are reported, as well as the evolution of the temperature and velocity along the flight path of the sparks. Observed initial spark temperature in this work mostly ranged within 1500\u00b0C to 1700\u00b0C. Results show evidence of both melting and oxidation of the sparks. Different blade speeds are used to understand their effect on spark velocity and temperature. The results of this study can be used as input parameters for spark oxidation and transport models, which in turn can be used to assess the hazards of spark sprays in wildland spot fires, ignition, explosions of flammable gaseous mixtures and dust clouds, and for monitoring and optimizing the material processes such as thermal-spray coating.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-019-00847-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Temperature and Motion Tracking of Metal Spark Sprays", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c10b6fbf3fdd7b358cc9ffee554f7e1c2850f8b3c65e555c8358e5d2743c098"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-019-00847-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113174355"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-019-00847-3", 
      "https://app.dimensions.ai/details/publication/pub.1113174355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10694-019-00847-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00847-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00847-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00847-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00847-3'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-019-00847-3 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N730399037fff46a7aac5dbf499b34480
4 schema:citation sg:pub.10.1007/s10694-015-0518-6
5 sg:pub.10.1007/s10694-018-0712-4
6 sg:pub.10.1023/a:1023685905159
7 sg:pub.10.1134/s0010508216060095
8 sg:pub.10.1361/105996301770349556
9 https://app.dimensions.ai/details/publication/pub.1103205634
10 https://doi.org/10.1002/9781119417989
11 https://doi.org/10.1002/aic.11677
12 https://doi.org/10.1016/0010-2180(65)90025-8
13 https://doi.org/10.1016/j.apenergy.2012.01.062
14 https://doi.org/10.1016/j.applthermaleng.2018.01.049
15 https://doi.org/10.1016/j.combustflame.2018.02.027
16 https://doi.org/10.1016/j.eswa.2015.12.019
17 https://doi.org/10.1016/j.jhazmat.2014.09.033
18 https://doi.org/10.1016/j.optlaseng.2016.09.013
19 https://doi.org/10.1016/j.proci.2010.05.006
20 https://doi.org/10.1016/j.proci.2012.05.030
21 https://doi.org/10.1016/j.proci.2014.05.081
22 https://doi.org/10.1016/j.proci.2016.09.014
23 https://doi.org/10.1016/s0379-7112(97)00050-7
24 https://doi.org/10.1071/wf16096
25 https://doi.org/10.1080/00102202.2014.935612
26 https://doi.org/10.1080/00102202.2014.973953
27 https://doi.org/10.1109/jsen.2017.2772899
28 https://doi.org/10.1177/0734904115611820
29 https://doi.org/10.1364/ao.54.004049
30 https://doi.org/10.1364/ao.54.004916
31 schema:datePublished 2019-04-01
32 schema:datePublishedReg 2019-04-01
33 schema:description The temperature, velocity, and size of hot metal sparks are essential to understanding their ability to ignite flammable materials. However, existing measurement methods have limitations to achieve detailed, in situ measurements of these parameters. This paper describes a methodology that combines color-ratio pyrometry and particle streak tracing velocimetry, together with digital image processing to obtain non-intrusive measurements of the temperature, velocity, and size of multiple sparks in a spray. Furthermore, these measurements can be performed using a properly calibrated commercially available color digital camera. The principle of the measurement is firstly introduced, and the repeatability and accuracy of the method are validated via a designed experiment. Then the method is performed to measure the temperature and velocity of metal (steel) sparks in sprays generated by abrasive cutting. Measurements of initial spark temperatures and velocities are reported, as well as the evolution of the temperature and velocity along the flight path of the sparks. Observed initial spark temperature in this work mostly ranged within 1500°C to 1700°C. Results show evidence of both melting and oxidation of the sparks. Different blade speeds are used to understand their effect on spark velocity and temperature. The results of this study can be used as input parameters for spark oxidation and transport models, which in turn can be used to assess the hazards of spark sprays in wildland spot fires, ignition, explosions of flammable gaseous mixtures and dust clouds, and for monitoring and optimizing the material processes such as thermal-spray coating.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1122008
38 schema:name Temperature and Motion Tracking of Metal Spark Sprays
39 schema:pagination 1-27
40 schema:productId N1db1e001abb7407394afa68278b0ad29
41 N84ba0b925dce488b81f420717ac2245c
42 Nd8968a4fc6fd420686c42476f2a8f0c1
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113174355
44 https://doi.org/10.1007/s10694-019-00847-3
45 schema:sdDatePublished 2019-04-11T13:55
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N53ddd638ff924380978d59ee569cb5f7
48 schema:url https://link.springer.com/10.1007%2Fs10694-019-00847-3
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N1db1e001abb7407394afa68278b0ad29 schema:name dimensions_id
53 schema:value pub.1113174355
54 rdf:type schema:PropertyValue
55 N53ddd638ff924380978d59ee569cb5f7 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N6fcf64bce11e41b1a54fa40aa230c195 rdf:first Neab825e567b7433ea42aa5226e3a2069
58 rdf:rest rdf:nil
59 N730399037fff46a7aac5dbf499b34480 rdf:first Nd4165865cf2d400baba6ef009fbd7f9d
60 rdf:rest Nbe01b78b547c416c93d5d9a7bf5ee376
61 N84ba0b925dce488b81f420717ac2245c schema:name doi
62 schema:value 10.1007/s10694-019-00847-3
63 rdf:type schema:PropertyValue
64 Nbe01b78b547c416c93d5d9a7bf5ee376 rdf:first Nf147098e30ea416aabd59d2797670995
65 rdf:rest Ndb3add62ebc042dc94cf42c7d93cb3df
66 Nc2683df66582498797896474c574d7e7 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
67 schema:familyName Xu
68 schema:givenName Chuanlong
69 rdf:type schema:Person
70 Nd4165865cf2d400baba6ef009fbd7f9d schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
71 schema:familyName Liu
72 schema:givenName Yudong
73 rdf:type schema:Person
74 Nd8968a4fc6fd420686c42476f2a8f0c1 schema:name readcube_id
75 schema:value 8c10b6fbf3fdd7b358cc9ffee554f7e1c2850f8b3c65e555c8358e5d2743c098
76 rdf:type schema:PropertyValue
77 Ndb3add62ebc042dc94cf42c7d93cb3df rdf:first Nc2683df66582498797896474c574d7e7
78 rdf:rest N6fcf64bce11e41b1a54fa40aa230c195
79 Neab825e567b7433ea42aa5226e3a2069 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
80 schema:familyName Fernandez-Pello
81 schema:givenName Carlos
82 rdf:type schema:Person
83 Nf147098e30ea416aabd59d2797670995 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
84 schema:familyName Urban
85 schema:givenName James L.
86 rdf:type schema:Person
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
91 schema:name Interdisciplinary Engineering
92 rdf:type schema:DefinedTerm
93 sg:journal.1122008 schema:issn 0015-2684
94 1572-8099
95 schema:name Fire Technology
96 rdf:type schema:Periodical
97 sg:pub.10.1007/s10694-015-0518-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042890883
98 https://doi.org/10.1007/s10694-015-0518-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10694-018-0712-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101405541
101 https://doi.org/10.1007/s10694-018-0712-4
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1023685905159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051821586
104 https://doi.org/10.1023/a:1023685905159
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s0010508216060095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010591277
107 https://doi.org/10.1134/s0010508216060095
108 rdf:type schema:CreativeWork
109 sg:pub.10.1361/105996301770349556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023752642
110 https://doi.org/10.1361/105996301770349556
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1103205634 schema:CreativeWork
113 https://doi.org/10.1002/9781119417989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103205634
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/aic.11677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025437708
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0010-2180(65)90025-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040970021
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.apenergy.2012.01.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026899560
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.applthermaleng.2018.01.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100725813
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.combustflame.2018.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101624800
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.eswa.2015.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013326137
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jhazmat.2014.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049514838
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.optlaseng.2016.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051472527
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.proci.2010.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001654634
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.proci.2012.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045079356
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.proci.2014.05.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027045018
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.proci.2016.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020733915
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0379-7112(97)00050-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043154809
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1071/wf16096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048433397
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/00102202.2014.935612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011940125
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/00102202.2014.973953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032605997
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/jsen.2017.2772899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092674374
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1177/0734904115611820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063844900
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1364/ao.54.004049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065132007
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1364/ao.54.004916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065132123
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
156 schema:name Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 210096, Nanjing, Jiangsu, People’s Republic of China
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
159 schema:name Combustion Fire Processes Laboratory, Department of Mechanical Engineering, University of California Berkeley, 94720, Berkeley, CA, USA
160 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 210096, Nanjing, Jiangsu, People’s Republic of China
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...