Numerical and Theoretical Evaluations of a Full-Scale Compartment Fire with an Externally Venting Flame View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-19

AUTHORS

Mathieu Duny, Dhionis Dhima, Jean-Pierre Garo, Hui-Ying Wang

ABSTRACT

Understanding of the physics and mechanisms of externally venting flames from enclosure fires with parallel sidewalls at the opening is fundamental to investigating fire spread of U-shape building façade. This work aims to identify the impact of separation distance of sidewalls on façade flame height, heat flux and sustained internal combustion. A series of numerical simulations is conducted in a full-scale compartment with 3.6 m in length/width and 3.1 m in height. An external façade wall is measured 6 m in height and 3.6 m in width. A pyrolysis surface with an area of 3.2 × 3.2 m2 is placed in the middle of the enclosure with a theoretical heat lease rate varying from 1 to 8 MW. The semi-empirical correlations, derived from a reduced cubic enclosure, are evaluated for a full scale façade fire for identifying the flame height dependence on the separation distance of sidewalls. It is found that an enhanced buoyancy-induced flow between sidewalls leads to an increase of the flame height by a factor of 50% and a rise of the peak of radiation heat flux by a factor of 20% as compared to a flat façade fire. The height of externally venting flame is sensitively reduced by a factor of 40% to 50% with an increase of the normalized sidewalls distance by opening width up to 3. The predicted flame height is more pronounced with an increase of flame height by a factor of 40% for a full scale façade than for a small scale one due to turbulence development. The predicted internal HRR is in quantitative agreement with the one from the correlation for a global equivalence ratio below 3. The predicted temperatures are in good agreement with the experimental data except in the intermittent-like regions where an over-prediction of the temperature by a factor of 50% is found due to a reduction in accuracy of LES combustion model. More... »

PAGES

1-27

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-019-00845-5

DOI

http://dx.doi.org/10.1007/s10694-019-00845-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112871456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut P\u2019, Fluides-Thermique-Combustion, CNRS, ENSMA, Universit\u00e9 de Poitiers, BP 40109, 86961, Futuroscope Chasseneuil Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duny", 
        "givenName": "Mathieu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific and Technical Centre for Building", 
          "id": "https://www.grid.ac/institutes/grid.423793.8", 
          "name": [
            "Centre Scientifique et Technique du B\u00e2timent, 84 avenue Jean Jaur\u00e8s, Champs sur Marne, 77447, Marne-La-Vall\u00e9e Cedex 2, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhima", 
        "givenName": "Dhionis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut P\u2019, Fluides-Thermique-Combustion, CNRS, ENSMA, Universit\u00e9 de Poitiers, BP 40109, 86961, Futuroscope Chasseneuil Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garo", 
        "givenName": "Jean-Pierre", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut P\u2019, Fluides-Thermique-Combustion, CNRS, ENSMA, Universit\u00e9 de Poitiers, BP 40109, 86961, Futuroscope Chasseneuil Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hui-Ying", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0379-7112(86)90052-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001067022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0379-7112(86)90052-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001067022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85167-4_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001412527", 
          "https://doi.org/10.1007/978-3-642-85167-4_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2013.08.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003561537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2014.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013538031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2007.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018327427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2013.08.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019031341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2013.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00102200500271344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019626302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021386137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0379-7112(82)90008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024116831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0379-7112(82)90008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024116831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025754018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(94)00233-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025931438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2013.02.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035005642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041512044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proci.2014.05.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043841636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0379-7112(01)00050-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047515012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2008.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049269494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bpasts-2015-0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050792661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/20130903004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057033776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1042391510367349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063922329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/2040-2317.4.3.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064586686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3801/iafss.fss.6-729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071436043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3801/iafss.fss.9-193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071436334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2017.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084526171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2017.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084526184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2017.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084849713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2017.03.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085166574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2017.04.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085426041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2017.03.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085441386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/1107/4/042024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109958853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/1107/4/042024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109958853"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-19", 
    "datePublishedReg": "2019-03-19", 
    "description": "Understanding of the physics and mechanisms of externally venting flames from enclosure fires with parallel sidewalls at the opening is fundamental to investigating fire spread of U-shape building fa\u00e7ade. This work aims to identify the impact of separation distance of sidewalls on fa\u00e7ade flame height, heat flux and sustained internal combustion. A series of numerical simulations is conducted in a full-scale compartment with 3.6 m in length/width and 3.1 m in height. An external fa\u00e7ade wall is measured 6 m in height and 3.6 m in width. A pyrolysis surface with an area of 3.2 \u00d7 3.2 m2 is placed in the middle of the enclosure with a theoretical heat lease rate varying from 1 to 8 MW. The semi-empirical correlations, derived from a reduced cubic enclosure, are evaluated for a full scale fa\u00e7ade fire for identifying the flame height dependence on the separation distance of sidewalls. It is found that an enhanced buoyancy-induced flow between sidewalls leads to an increase of the flame height by a factor of 50% and a rise of the peak of radiation heat flux by a factor of 20% as compared to a flat fa\u00e7ade fire. The height of externally venting flame is sensitively reduced by a factor of 40% to 50% with an increase of the normalized sidewalls distance by opening width up to 3. The predicted flame height is more pronounced with an increase of flame height by a factor of 40% for a full scale fa\u00e7ade than for a small scale one due to turbulence development. The predicted internal HRR is in quantitative agreement with the one from the correlation for a global equivalence ratio below 3. The predicted temperatures are in good agreement with the experimental data except in the intermittent-like regions where an over-prediction of the temperature by a factor of 50% is found due to a reduction in accuracy of LES combustion model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-019-00845-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Numerical and Theoretical Evaluations of a Full-Scale Compartment Fire with an Externally Venting Flame", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c5e97cc3fb4d396be1e8a78e0540aacf43f7e1e55b39133ce0ecf4ae98680ed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-019-00845-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112871456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-019-00845-5", 
      "https://app.dimensions.ai/details/publication/pub.1112871456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87104_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10694-019-00845-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00845-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00845-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00845-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00845-5'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-019-00845-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N1c8e0afdcea943c38dcf065bcdbd9b42
4 schema:citation sg:pub.10.1007/978-3-642-85167-4_24
5 https://doi.org/10.1016/0010-2180(94)00233-i
6 https://doi.org/10.1016/0379-7112(82)90008-x
7 https://doi.org/10.1016/0379-7112(86)90052-4
8 https://doi.org/10.1016/j.firesaf.2005.11.002
9 https://doi.org/10.1016/j.firesaf.2007.12.003
10 https://doi.org/10.1016/j.firesaf.2008.06.005
11 https://doi.org/10.1016/j.firesaf.2014.11.023
12 https://doi.org/10.1016/j.firesaf.2017.03.030
13 https://doi.org/10.1016/j.firesaf.2017.03.053
14 https://doi.org/10.1016/j.firesaf.2017.03.060
15 https://doi.org/10.1016/j.firesaf.2017.03.075
16 https://doi.org/10.1016/j.firesaf.2017.04.006
17 https://doi.org/10.1016/j.firesaf.2017.04.037
18 https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.045
19 https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.060
20 https://doi.org/10.1016/j.ijthermalsci.2013.07.015
21 https://doi.org/10.1016/j.proci.2014.05.083
22 https://doi.org/10.1016/j.proeng.2013.02.172
23 https://doi.org/10.1016/j.proeng.2013.08.056
24 https://doi.org/10.1016/j.proeng.2013.08.086
25 https://doi.org/10.1016/s0379-7112(01)00050-9
26 https://doi.org/10.1051/matecconf/20130903004
27 https://doi.org/10.1080/00102200500271344
28 https://doi.org/10.1088/1742-6596/1107/4/042024
29 https://doi.org/10.1177/1042391510367349
30 https://doi.org/10.1260/2040-2317.4.3.153
31 https://doi.org/10.1515/bpasts-2015-0015
32 https://doi.org/10.3801/iafss.fss.6-729
33 https://doi.org/10.3801/iafss.fss.9-193
34 schema:datePublished 2019-03-19
35 schema:datePublishedReg 2019-03-19
36 schema:description Understanding of the physics and mechanisms of externally venting flames from enclosure fires with parallel sidewalls at the opening is fundamental to investigating fire spread of U-shape building façade. This work aims to identify the impact of separation distance of sidewalls on façade flame height, heat flux and sustained internal combustion. A series of numerical simulations is conducted in a full-scale compartment with 3.6 m in length/width and 3.1 m in height. An external façade wall is measured 6 m in height and 3.6 m in width. A pyrolysis surface with an area of 3.2 × 3.2 m2 is placed in the middle of the enclosure with a theoretical heat lease rate varying from 1 to 8 MW. The semi-empirical correlations, derived from a reduced cubic enclosure, are evaluated for a full scale façade fire for identifying the flame height dependence on the separation distance of sidewalls. It is found that an enhanced buoyancy-induced flow between sidewalls leads to an increase of the flame height by a factor of 50% and a rise of the peak of radiation heat flux by a factor of 20% as compared to a flat façade fire. The height of externally venting flame is sensitively reduced by a factor of 40% to 50% with an increase of the normalized sidewalls distance by opening width up to 3. The predicted flame height is more pronounced with an increase of flame height by a factor of 40% for a full scale façade than for a small scale one due to turbulence development. The predicted internal HRR is in quantitative agreement with the one from the correlation for a global equivalence ratio below 3. The predicted temperatures are in good agreement with the experimental data except in the intermittent-like regions where an over-prediction of the temperature by a factor of 50% is found due to a reduction in accuracy of LES combustion model.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1122008
41 schema:name Numerical and Theoretical Evaluations of a Full-Scale Compartment Fire with an Externally Venting Flame
42 schema:pagination 1-27
43 schema:productId N7b07216a2ee74aeeb78d5b91cecd8f9d
44 Nb954c29108194848820bd50797daafe6
45 Nf4c8e2bef09e4c80b5169b7359a2c137
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112871456
47 https://doi.org/10.1007/s10694-019-00845-5
48 schema:sdDatePublished 2019-04-11T12:25
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ndff465e0c48b462d96b37eee85601f33
51 schema:url https://link.springer.com/10.1007%2Fs10694-019-00845-5
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N12c4eebc9ba44b8fbbf0c4532dc720a3 rdf:first Nfc6f40c5c6a54b56887892e259c15ff4
56 rdf:rest Nff977d7032274195951c448f0ebe729b
57 N180334fbe4804daeb2e5b3e59008a3f7 rdf:first N2733f8da7a2b483cba2f71d058e09444
58 rdf:rest N12c4eebc9ba44b8fbbf0c4532dc720a3
59 N1c8e0afdcea943c38dcf065bcdbd9b42 rdf:first Ne52dc5e46f55492aa53d8bc139cdb19e
60 rdf:rest N180334fbe4804daeb2e5b3e59008a3f7
61 N2733f8da7a2b483cba2f71d058e09444 schema:affiliation https://www.grid.ac/institutes/grid.423793.8
62 schema:familyName Dhima
63 schema:givenName Dhionis
64 rdf:type schema:Person
65 N48c943cf4e654c6f9d04afcffc618caf schema:affiliation https://www.grid.ac/institutes/grid.4444.0
66 schema:familyName Wang
67 schema:givenName Hui-Ying
68 rdf:type schema:Person
69 N7b07216a2ee74aeeb78d5b91cecd8f9d schema:name readcube_id
70 schema:value 0c5e97cc3fb4d396be1e8a78e0540aacf43f7e1e55b39133ce0ecf4ae98680ed
71 rdf:type schema:PropertyValue
72 Nb954c29108194848820bd50797daafe6 schema:name doi
73 schema:value 10.1007/s10694-019-00845-5
74 rdf:type schema:PropertyValue
75 Ndff465e0c48b462d96b37eee85601f33 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Ne52dc5e46f55492aa53d8bc139cdb19e schema:affiliation https://www.grid.ac/institutes/grid.4444.0
78 schema:familyName Duny
79 schema:givenName Mathieu
80 rdf:type schema:Person
81 Nf4c8e2bef09e4c80b5169b7359a2c137 schema:name dimensions_id
82 schema:value pub.1112871456
83 rdf:type schema:PropertyValue
84 Nfc6f40c5c6a54b56887892e259c15ff4 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
85 schema:familyName Garo
86 schema:givenName Jean-Pierre
87 rdf:type schema:Person
88 Nff977d7032274195951c448f0ebe729b rdf:first N48c943cf4e654c6f9d04afcffc618caf
89 rdf:rest rdf:nil
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
94 schema:name Interdisciplinary Engineering
95 rdf:type schema:DefinedTerm
96 sg:journal.1122008 schema:issn 0015-2684
97 1572-8099
98 schema:name Fire Technology
99 rdf:type schema:Periodical
100 sg:pub.10.1007/978-3-642-85167-4_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001412527
101 https://doi.org/10.1007/978-3-642-85167-4_24
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0010-2180(94)00233-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1025931438
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0379-7112(82)90008-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024116831
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0379-7112(86)90052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001067022
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.firesaf.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025754018
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.firesaf.2007.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018327427
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.firesaf.2008.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049269494
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.firesaf.2014.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013538031
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.firesaf.2017.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084526171
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.firesaf.2017.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084526184
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.firesaf.2017.03.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085166574
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.firesaf.2017.03.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085441386
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.firesaf.2017.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084849713
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.firesaf.2017.04.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085426041
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041512044
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021386137
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijthermalsci.2013.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081970
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.proci.2014.05.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043841636
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.proeng.2013.02.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035005642
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.proeng.2013.08.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003561537
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.proeng.2013.08.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019031341
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0379-7112(01)00050-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047515012
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1051/matecconf/20130903004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057033776
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/00102200500271344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019626302
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/1742-6596/1107/4/042024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109958853
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1177/1042391510367349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063922329
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1260/2040-2317.4.3.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064586686
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1515/bpasts-2015-0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050792661
156 rdf:type schema:CreativeWork
157 https://doi.org/10.3801/iafss.fss.6-729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071436043
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3801/iafss.fss.9-193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071436334
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.423793.8 schema:alternateName Scientific and Technical Centre for Building
162 schema:name Centre Scientifique et Technique du Bâtiment, 84 avenue Jean Jaurès, Champs sur Marne, 77447, Marne-La-Vallée Cedex 2, France
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
165 schema:name Institut P’, Fluides-Thermique-Combustion, CNRS, ENSMA, Université de Poitiers, BP 40109, 86961, Futuroscope Chasseneuil Cedex, France
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...