Propagation of Model Uncertainty in the Stochastic Simulations of a Compartment Fire View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-14

AUTHORS

Deepak Paudel, Simo Hostikka

ABSTRACT

Model validation and probabilistic simulations are routinely used for quantifying the uncertainties originating from the numerical models and their inputs, respectively. How the two uncertainty types combine in the context of fire risk analyses is not well understood. In this work, we study the propagation of modeling uncertainty to the predicted distributions of probabilistic fire simulations using model validation data representing an uncertain compartment fire scenario. The wall temperatures are predicted in three different ways: one using a coupled model in which the input is the fire heat release rate, and two models using a standalone conduction solver and either experimentally or numerically (CFD) determined heat flux as a boundary condition. Using the predicted wall temperatures, we calculated demonstrative wall failure probabilities assuming different critical threshold temperatures. We propose a simple method for correcting the simulated distributions and probabilities towards the experimentally observed ones. The simulation results with the Fire Dynamics Simulator show that the obtained uncertainties of this particular validation set are similar to the ones reported in the validation guide. In average, the most accurate model over-predicts wall temperature by ∼ 5.0% and the prediction uncertainty for both gas phase and solid phase temperature is ∼ 10%. The wall temperatures predicted from the measured heat-fluxes show higher modeling uncertainty than the ones predicted by a coupled model of the entire gas-wall system. The proposed correction method is shown to improve the accuracy of the predicted distributions for internal wall temperatures at different times. In practical applications, this would lead to more accurate estimates of the time-dependent failure probabilities. More... »

PAGES

1-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-019-00841-9

DOI

http://dx.doi.org/10.1007/s10694-019-00841-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112780422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aalto University", 
          "id": "https://www.grid.ac/institutes/grid.5373.2", 
          "name": [
            "Aalto University, Espoo, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paudel", 
        "givenName": "Deepak", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aalto University", 
          "id": "https://www.grid.ac/institutes/grid.5373.2", 
          "name": [
            "Fire Safety Engineering, Aalto University, Espoo, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hostikka", 
        "givenName": "Simo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.buildenv.2005.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2005.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2015.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009135370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2013.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009881950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-014-0436-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012353816", 
          "https://doi.org/10.1007/s10694-014-0436-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0029-5493(03)00106-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012821936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0029-5493(03)00106-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012821936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2006.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2006.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015653697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-015-0561-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016850600", 
          "https://doi.org/10.1007/s10694-015-0561-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2011.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043208733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-016-0609-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048146134", 
          "https://doi.org/10.1007/s10694-016-0609-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-016-0609-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048146134", 
          "https://doi.org/10.1007/s10694-016-0609-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0026-1394/48/3/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058980121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2332920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069894463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2017.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084526172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0701-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100346364", 
          "https://doi.org/10.1007/s10694-018-0701-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0702-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100424633", 
          "https://doi.org/10.1007/s10694-018-0702-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0709-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101104252", 
          "https://doi.org/10.1007/s10694-018-0709-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0709-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101104252", 
          "https://doi.org/10.1007/s10694-018-0709-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0718-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101835455", 
          "https://doi.org/10.1007/s10694-018-0718-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0718-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101835455", 
          "https://doi.org/10.1007/s10694-018-0718-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-018-0718-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101835455", 
          "https://doi.org/10.1007/s10694-018-0718-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2018027275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110568389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2018027275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110568389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/int.j.uncertaintyquantification.v1.i2.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112171240"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-14", 
    "datePublishedReg": "2019-03-14", 
    "description": "Model validation and probabilistic simulations are routinely used for quantifying the uncertainties originating from the numerical models and their inputs, respectively. How the two uncertainty types combine in the context of fire risk analyses is not well understood. In this work, we study the propagation of modeling uncertainty to the predicted distributions of probabilistic fire simulations using model validation data representing an uncertain compartment fire scenario. The wall temperatures are predicted in three different ways: one using a coupled model in which the input is the fire heat release rate, and two models using a standalone conduction solver and either experimentally or numerically (CFD) determined heat flux as a boundary condition. Using the predicted wall temperatures, we calculated demonstrative wall failure probabilities assuming different critical threshold temperatures. We propose a simple method for correcting the simulated distributions and probabilities towards the experimentally observed ones. The simulation results with the Fire Dynamics Simulator show that the obtained uncertainties of this particular validation set are similar to the ones reported in the validation guide. In average, the most accurate model over-predicts wall temperature by \u223c 5.0% and the prediction uncertainty for both gas phase and solid phase temperature is \u223c 10%. The wall temperatures predicted from the measured heat-fluxes show higher modeling uncertainty than the ones predicted by a coupled model of the entire gas-wall system. The proposed correction method is shown to improve the accuracy of the predicted distributions for internal wall temperatures at different times. In practical applications, this would lead to more accurate estimates of the time-dependent failure probabilities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-019-00841-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Propagation of Model Uncertainty in the Stochastic Simulations of a Compartment Fire", 
    "pagination": "1-28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dc29bd77d63a17162abff3b8cde69a9f8e0ee11a32c934f7b92d685679e8cd74"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-019-00841-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112780422"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-019-00841-9", 
      "https://app.dimensions.ai/details/publication/pub.1112780422"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29191_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10694-019-00841-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00841-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00841-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00841-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00841-9'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-019-00841-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc9728b95b539409c833b1c5a6153f9d0
4 schema:citation sg:pub.10.1007/s10694-014-0436-z
5 sg:pub.10.1007/s10694-015-0561-3
6 sg:pub.10.1007/s10694-016-0609-z
7 sg:pub.10.1007/s10694-018-0701-7
8 sg:pub.10.1007/s10694-018-0702-6
9 sg:pub.10.1007/s10694-018-0709-z
10 sg:pub.10.1007/s10694-018-0718-y
11 https://doi.org/10.1016/j.buildenv.2005.03.010
12 https://doi.org/10.1016/j.buildenv.2006.11.001
13 https://doi.org/10.1016/j.firesaf.2013.01.031
14 https://doi.org/10.1016/j.firesaf.2017.03.032
15 https://doi.org/10.1016/j.nucengdes.2011.09.014
16 https://doi.org/10.1016/j.ress.2015.02.010
17 https://doi.org/10.1016/j.strusafe.2006.07.016
18 https://doi.org/10.1016/s0029-5493(03)00106-7
19 https://doi.org/10.1088/0026-1394/48/3/011
20 https://doi.org/10.1615/int.j.uncertaintyquantification.2018027275
21 https://doi.org/10.1615/int.j.uncertaintyquantification.v1.i2.30
22 https://doi.org/10.2307/2332920
23 schema:datePublished 2019-03-14
24 schema:datePublishedReg 2019-03-14
25 schema:description Model validation and probabilistic simulations are routinely used for quantifying the uncertainties originating from the numerical models and their inputs, respectively. How the two uncertainty types combine in the context of fire risk analyses is not well understood. In this work, we study the propagation of modeling uncertainty to the predicted distributions of probabilistic fire simulations using model validation data representing an uncertain compartment fire scenario. The wall temperatures are predicted in three different ways: one using a coupled model in which the input is the fire heat release rate, and two models using a standalone conduction solver and either experimentally or numerically (CFD) determined heat flux as a boundary condition. Using the predicted wall temperatures, we calculated demonstrative wall failure probabilities assuming different critical threshold temperatures. We propose a simple method for correcting the simulated distributions and probabilities towards the experimentally observed ones. The simulation results with the Fire Dynamics Simulator show that the obtained uncertainties of this particular validation set are similar to the ones reported in the validation guide. In average, the most accurate model over-predicts wall temperature by ∼ 5.0% and the prediction uncertainty for both gas phase and solid phase temperature is ∼ 10%. The wall temperatures predicted from the measured heat-fluxes show higher modeling uncertainty than the ones predicted by a coupled model of the entire gas-wall system. The proposed correction method is shown to improve the accuracy of the predicted distributions for internal wall temperatures at different times. In practical applications, this would lead to more accurate estimates of the time-dependent failure probabilities.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1122008
30 schema:name Propagation of Model Uncertainty in the Stochastic Simulations of a Compartment Fire
31 schema:pagination 1-28
32 schema:productId N49cd40f675764837b48b5c4e0882de18
33 Nd1451b0c027c40b290e7b51af3eb4cc5
34 Ne3743a52a4bb46deb6a8c2e0fceb866f
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112780422
36 https://doi.org/10.1007/s10694-019-00841-9
37 schema:sdDatePublished 2019-04-11T11:52
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ne04efd703a0940689feb311140cb730b
40 schema:url https://link.springer.com/10.1007%2Fs10694-019-00841-9
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N49cd40f675764837b48b5c4e0882de18 schema:name doi
45 schema:value 10.1007/s10694-019-00841-9
46 rdf:type schema:PropertyValue
47 N7a44211267ec4b539d593ac3f10fd21c schema:affiliation https://www.grid.ac/institutes/grid.5373.2
48 schema:familyName Hostikka
49 schema:givenName Simo
50 rdf:type schema:Person
51 N7b6312c09370448295abb3555d62da7e rdf:first N7a44211267ec4b539d593ac3f10fd21c
52 rdf:rest rdf:nil
53 N9503c88f71f1479599ee222aa39eb8f5 schema:affiliation https://www.grid.ac/institutes/grid.5373.2
54 schema:familyName Paudel
55 schema:givenName Deepak
56 rdf:type schema:Person
57 Nc9728b95b539409c833b1c5a6153f9d0 rdf:first N9503c88f71f1479599ee222aa39eb8f5
58 rdf:rest N7b6312c09370448295abb3555d62da7e
59 Nd1451b0c027c40b290e7b51af3eb4cc5 schema:name readcube_id
60 schema:value dc29bd77d63a17162abff3b8cde69a9f8e0ee11a32c934f7b92d685679e8cd74
61 rdf:type schema:PropertyValue
62 Ne04efd703a0940689feb311140cb730b schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ne3743a52a4bb46deb6a8c2e0fceb866f schema:name dimensions_id
65 schema:value pub.1112780422
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1122008 schema:issn 0015-2684
74 1572-8099
75 schema:name Fire Technology
76 rdf:type schema:Periodical
77 sg:pub.10.1007/s10694-014-0436-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012353816
78 https://doi.org/10.1007/s10694-014-0436-z
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s10694-015-0561-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016850600
81 https://doi.org/10.1007/s10694-015-0561-3
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s10694-016-0609-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048146134
84 https://doi.org/10.1007/s10694-016-0609-z
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s10694-018-0701-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100346364
87 https://doi.org/10.1007/s10694-018-0701-7
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s10694-018-0702-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424633
90 https://doi.org/10.1007/s10694-018-0702-6
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10694-018-0709-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101104252
93 https://doi.org/10.1007/s10694-018-0709-z
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10694-018-0718-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1101835455
96 https://doi.org/10.1007/s10694-018-0718-y
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.buildenv.2005.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174723
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.buildenv.2006.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015653697
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.firesaf.2013.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009881950
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.firesaf.2017.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084526172
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.nucengdes.2011.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043208733
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.ress.2015.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009135370
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.strusafe.2006.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013153985
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0029-5493(03)00106-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012821936
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0026-1394/48/3/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058980121
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1615/int.j.uncertaintyquantification.2018027275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110568389
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1615/int.j.uncertaintyquantification.v1.i2.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112171240
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2307/2332920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069894463
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.5373.2 schema:alternateName Aalto University
123 schema:name Aalto University, Espoo, Finland
124 Fire Safety Engineering, Aalto University, Espoo, Finland
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...