Microstructure and Strength of Calcium Carbonate (CaCO3) Whisker Reinforced Cement Paste After Exposed to High Temperatures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-09

AUTHORS

Mingli Cao, Li Li, Hong Yin, Xing Ming

ABSTRACT

Fire resistance research of a new building material is the important part of public protection and necessary for its large scale use in construction project. Although cheap calcium carbonate whisker (CW) could improve the mechanical properties of cementitious composites under ambient temperature, there is no information about the influence of high temperature on CW reinforced cementitious composites. In order to bridge this gap, this research studied the strength and microstructure changes of CW and CW reinforced cement paste after exposed to evaluated temperatures. CW and Portland cement paste with 0%, 10%, 20% and 30% CW having water/cement ratio of 0.30 was exposed to the temperatures of 20, 200, 300, 400, 500, 600, 700, 800, 900 and 1000°C. 40 mm × 40 mm × 160 mm specimens were employed to determine the residual flexural and compressive strength of CW reinforced cement. Scanning electron microscope (SEM), matched energy dispersive spectrometer (EDS), thermal gravimetric analyzer (TGA) and X-ray powder diffractometer (XRD) were employed to detect the microstructure changes. CW could act as micro-fiber to increase the residual flexural and compressive strength of cement and the enhancement is better than carbon fiber and polypropylene fiber from room temperature to 600°C, which means that CW can be used to replace carbon fiber and polypropylene fiber as fire resistance additional material in cementitious composites. TGA presented that in the process of cement hydration and heating, CW may bring different hydration products phase: Ca(OH)2 and C–S–H (I). CaCO3 produced by cement hydration is not as stable as CW. The onset phase transformation temperature from aragonite CaCO3 to calcite is about 400°C, which can be proved by the XRD test and the morphologies under SEM. At the same time, internal autoclaving in cement paste produced new hydration products on the surface of the calcite CW. The bond between these new hydration products and calcite was stronger than the old hydration products and aragonite CW, proved by the EDS test. Hence, after expose to temperature range from 400°C to 600°C, CW demonstrates better reinforcing effect than that at lower temperatures. CW reinforced cementitious composites may possibly be employed as a protection material for fire easily damaged structures, due to its good residual mechanical properties after expose to evaluated temperature lower than 600°C and good economical efficiency. More... »

PAGES

1-21

Journal

TITLE

Fire Technology

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-019-00839-3

DOI

http://dx.doi.org/10.1007/s10694-019-00839-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112672970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Civil Engineering, Dalian University of Technology, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Mingli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Civil Engineering, Dalian University of Technology, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIRO Manufacturing, Clayton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Hong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Civil Engineering, Dalian University of Technology, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ming", 
        "givenName": "Xing", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1617/s11527-015-0537-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000225266", 
          "https://doi.org/10.1617/s11527-015-0537-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2007.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002848701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(69)90108-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008109175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(69)90108-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008109175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2343/geochemj.19.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012386974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2011.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015009148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2014.05.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015437854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2004.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015933179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2003.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016883962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2015.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019734577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-8846(99)00264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020025076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2004.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021510639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2007.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022718241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2016.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022850626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5402/2011/856849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023163611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021723126005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023587439", 
          "https://doi.org/10.1023/a:1021723126005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2011.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025572719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2014.01.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025649704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2014.10.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025952904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2012.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026959173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2016.11.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029311431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2016.03.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031281522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-8846(01)00558-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032123705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-015-0504-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033508174", 
          "https://doi.org/10.1007/s10694-015-0504-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2009.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033651184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-014-8655-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033963959", 
          "https://doi.org/10.1007/s10853-014-8655-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02479085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035090018", 
          "https://doi.org/10.1007/bf02479085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02479085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035090018", 
          "https://doi.org/10.1007/bf02479085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2013.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035866095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11595-011-0305-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036025305", 
          "https://doi.org/10.1007/s11595-011-0305-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0379-7112(03)00093-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037685938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11595-011-0352-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038872076", 
          "https://doi.org/10.1007/s11595-011-0352-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2015.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045844290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jz067i012p04873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048232565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2008.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049755230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2015.05.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051453551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesa.2016.08.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)mt.1943-5533.0000335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057639351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)mt.1943-5533.0001041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057640056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)mt.1943-5533.0001647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057640661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/macr.1992.44.161.291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068237034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2017.04.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085198180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2017.06.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086113390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/nano8070465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105142830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-09", 
    "datePublishedReg": "2019-03-09", 
    "description": "Fire resistance research of a new building material is the important part of public protection and necessary for its large scale use in construction project. Although cheap calcium carbonate whisker (CW) could improve the mechanical properties of cementitious composites under ambient temperature, there is no information about the influence of high temperature on CW reinforced cementitious composites. In order to bridge this gap, this research studied the strength and microstructure changes of CW and CW reinforced cement paste after exposed to evaluated temperatures. CW and Portland cement paste with 0%, 10%, 20% and 30% CW having water/cement ratio of 0.30 was exposed to the temperatures of 20, 200, 300, 400, 500, 600, 700, 800, 900 and 1000\u00b0C. 40 mm \u00d7 40 mm \u00d7 160 mm specimens were employed to determine the residual flexural and compressive strength of CW reinforced cement. Scanning electron microscope (SEM), matched energy dispersive spectrometer (EDS), thermal gravimetric analyzer (TGA) and X-ray powder diffractometer (XRD) were employed to detect the microstructure changes. CW could act as micro-fiber to increase the residual flexural and compressive strength of cement and the enhancement is better than carbon fiber and polypropylene fiber from room temperature to 600\u00b0C, which means that CW can be used to replace carbon fiber and polypropylene fiber as fire resistance additional material in cementitious composites. TGA presented that in the process of cement hydration and heating, CW may bring different hydration products phase: Ca(OH)2 and C\u2013S\u2013H (I). CaCO3 produced by cement hydration is not as stable as CW. The onset phase transformation temperature from aragonite CaCO3 to calcite is about 400\u00b0C, which can be proved by the XRD test and the morphologies under SEM. At the same time, internal autoclaving in cement paste produced new hydration products on the surface of the calcite CW. The bond between these new hydration products and calcite was stronger than the old hydration products and aragonite CW, proved by the EDS test. Hence, after expose to temperature range from 400\u00b0C to 600\u00b0C, CW demonstrates better reinforcing effect than that at lower temperatures. CW reinforced cementitious composites may possibly be employed as a protection material for fire easily damaged structures, due to its good residual mechanical properties after expose to evaluated temperature lower than 600\u00b0C and good economical efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-019-00839-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Microstructure and Strength of Calcium Carbonate (CaCO3) Whisker Reinforced Cement Paste After Exposed to High Temperatures", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ba93bf3ad57b9a053d4e39317dbf3d4d177f4d3902a0e1d8614fd356e1b050f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-019-00839-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112672970"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-019-00839-3", 
      "https://app.dimensions.ai/details/publication/pub.1112672970"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11716_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10694-019-00839-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00839-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00839-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00839-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00839-3'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      66 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-019-00839-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc001e4cfcfed4cd48b6176fd1de7df1a
4 schema:citation sg:pub.10.1007/bf02479085
5 sg:pub.10.1007/s10694-015-0504-z
6 sg:pub.10.1007/s10853-014-8655-8
7 sg:pub.10.1007/s11595-011-0305-2
8 sg:pub.10.1007/s11595-011-0352-8
9 sg:pub.10.1023/a:1021723126005
10 sg:pub.10.1617/s11527-015-0537-2
11 https://doi.org/10.1016/0016-7037(69)90108-2
12 https://doi.org/10.1016/j.cemconres.2003.11.010
13 https://doi.org/10.1016/j.cemconres.2004.02.011
14 https://doi.org/10.1016/j.cemconres.2004.06.015
15 https://doi.org/10.1016/j.cemconres.2007.02.011
16 https://doi.org/10.1016/j.cemconres.2007.11.010
17 https://doi.org/10.1016/j.cemconres.2011.10.007
18 https://doi.org/10.1016/j.cemconres.2015.12.001
19 https://doi.org/10.1016/j.compositesa.2016.08.033
20 https://doi.org/10.1016/j.compositesb.2016.11.037
21 https://doi.org/10.1016/j.conbuildmat.2011.10.006
22 https://doi.org/10.1016/j.conbuildmat.2012.10.012
23 https://doi.org/10.1016/j.conbuildmat.2013.04.014
24 https://doi.org/10.1016/j.conbuildmat.2014.01.088
25 https://doi.org/10.1016/j.conbuildmat.2014.05.059
26 https://doi.org/10.1016/j.conbuildmat.2014.10.042
27 https://doi.org/10.1016/j.conbuildmat.2015.05.056
28 https://doi.org/10.1016/j.conbuildmat.2015.05.131
29 https://doi.org/10.1016/j.conbuildmat.2016.03.070
30 https://doi.org/10.1016/j.conbuildmat.2016.11.120
31 https://doi.org/10.1016/j.conbuildmat.2017.04.083
32 https://doi.org/10.1016/j.conbuildmat.2017.06.057
33 https://doi.org/10.1016/j.firesaf.2008.12.004
34 https://doi.org/10.1016/j.firesaf.2009.07.001
35 https://doi.org/10.1016/s0008-8846(01)00558-0
36 https://doi.org/10.1016/s0008-8846(99)00264-1
37 https://doi.org/10.1016/s0379-7112(03)00093-6
38 https://doi.org/10.1029/jz067i012p04873
39 https://doi.org/10.1061/(asce)mt.1943-5533.0000335
40 https://doi.org/10.1061/(asce)mt.1943-5533.0001041
41 https://doi.org/10.1061/(asce)mt.1943-5533.0001647
42 https://doi.org/10.1680/macr.1992.44.161.291
43 https://doi.org/10.2343/geochemj.19.245
44 https://doi.org/10.3390/nano8070465
45 https://doi.org/10.5402/2011/856849
46 schema:datePublished 2019-03-09
47 schema:datePublishedReg 2019-03-09
48 schema:description Fire resistance research of a new building material is the important part of public protection and necessary for its large scale use in construction project. Although cheap calcium carbonate whisker (CW) could improve the mechanical properties of cementitious composites under ambient temperature, there is no information about the influence of high temperature on CW reinforced cementitious composites. In order to bridge this gap, this research studied the strength and microstructure changes of CW and CW reinforced cement paste after exposed to evaluated temperatures. CW and Portland cement paste with 0%, 10%, 20% and 30% CW having water/cement ratio of 0.30 was exposed to the temperatures of 20, 200, 300, 400, 500, 600, 700, 800, 900 and 1000°C. 40 mm × 40 mm × 160 mm specimens were employed to determine the residual flexural and compressive strength of CW reinforced cement. Scanning electron microscope (SEM), matched energy dispersive spectrometer (EDS), thermal gravimetric analyzer (TGA) and X-ray powder diffractometer (XRD) were employed to detect the microstructure changes. CW could act as micro-fiber to increase the residual flexural and compressive strength of cement and the enhancement is better than carbon fiber and polypropylene fiber from room temperature to 600°C, which means that CW can be used to replace carbon fiber and polypropylene fiber as fire resistance additional material in cementitious composites. TGA presented that in the process of cement hydration and heating, CW may bring different hydration products phase: Ca(OH)2 and C–S–H (I). CaCO3 produced by cement hydration is not as stable as CW. The onset phase transformation temperature from aragonite CaCO3 to calcite is about 400°C, which can be proved by the XRD test and the morphologies under SEM. At the same time, internal autoclaving in cement paste produced new hydration products on the surface of the calcite CW. The bond between these new hydration products and calcite was stronger than the old hydration products and aragonite CW, proved by the EDS test. Hence, after expose to temperature range from 400°C to 600°C, CW demonstrates better reinforcing effect than that at lower temperatures. CW reinforced cementitious composites may possibly be employed as a protection material for fire easily damaged structures, due to its good residual mechanical properties after expose to evaluated temperature lower than 600°C and good economical efficiency.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf sg:journal.1122008
53 schema:name Microstructure and Strength of Calcium Carbonate (CaCO3) Whisker Reinforced Cement Paste After Exposed to High Temperatures
54 schema:pagination 1-21
55 schema:productId N4c5db294216642319751f823021dab7d
56 Nb0b1b094d63a4683961e0afe0c07d63f
57 Nfa352f747f46480abf9fa9c094d66bd5
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112672970
59 https://doi.org/10.1007/s10694-019-00839-3
60 schema:sdDatePublished 2019-04-11T11:20
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N0dc7724cc5404cd5825b6ad1d2071ceb
63 schema:url https://link.springer.com/10.1007%2Fs10694-019-00839-3
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0dc7724cc5404cd5825b6ad1d2071ceb schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N23b610a3e911461196e07e0dda1eb764 rdf:first Nef902b9f16174f41aeeb1b26301cbbb0
70 rdf:rest N5691e660d0ab42e0b17d1e50b7793797
71 N2eaa05ad2030467f953a174ff727c8aa schema:affiliation https://www.grid.ac/institutes/grid.30055.33
72 schema:familyName Cao
73 schema:givenName Mingli
74 rdf:type schema:Person
75 N30d4488954964009bcad57374d7d0183 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
76 schema:familyName Ming
77 schema:givenName Xing
78 rdf:type schema:Person
79 N3f25d305bf114190855dfd6ed0df9800 rdf:first N30d4488954964009bcad57374d7d0183
80 rdf:rest rdf:nil
81 N4c5db294216642319751f823021dab7d schema:name doi
82 schema:value 10.1007/s10694-019-00839-3
83 rdf:type schema:PropertyValue
84 N5691e660d0ab42e0b17d1e50b7793797 rdf:first Nefdd4b6e34474a19be9c54d7ec790941
85 rdf:rest N3f25d305bf114190855dfd6ed0df9800
86 Nb0b1b094d63a4683961e0afe0c07d63f schema:name readcube_id
87 schema:value 8ba93bf3ad57b9a053d4e39317dbf3d4d177f4d3902a0e1d8614fd356e1b050f
88 rdf:type schema:PropertyValue
89 Nc001e4cfcfed4cd48b6176fd1de7df1a rdf:first N2eaa05ad2030467f953a174ff727c8aa
90 rdf:rest N23b610a3e911461196e07e0dda1eb764
91 Nc3e683f6ac8d4df7b97a3afc36221c80 schema:name CSIRO Manufacturing, Clayton, VIC, Australia
92 rdf:type schema:Organization
93 Nef902b9f16174f41aeeb1b26301cbbb0 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
94 schema:familyName Li
95 schema:givenName Li
96 rdf:type schema:Person
97 Nefdd4b6e34474a19be9c54d7ec790941 schema:affiliation Nc3e683f6ac8d4df7b97a3afc36221c80
98 schema:familyName Yin
99 schema:givenName Hong
100 rdf:type schema:Person
101 Nfa352f747f46480abf9fa9c094d66bd5 schema:name dimensions_id
102 schema:value pub.1112672970
103 rdf:type schema:PropertyValue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1122008 schema:issn 0015-2684
111 1572-8099
112 schema:name Fire Technology
113 rdf:type schema:Periodical
114 sg:pub.10.1007/bf02479085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035090018
115 https://doi.org/10.1007/bf02479085
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10694-015-0504-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033508174
118 https://doi.org/10.1007/s10694-015-0504-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10853-014-8655-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033963959
121 https://doi.org/10.1007/s10853-014-8655-8
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11595-011-0305-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036025305
124 https://doi.org/10.1007/s11595-011-0305-2
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11595-011-0352-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038872076
127 https://doi.org/10.1007/s11595-011-0352-8
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1021723126005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023587439
130 https://doi.org/10.1023/a:1021723126005
131 rdf:type schema:CreativeWork
132 sg:pub.10.1617/s11527-015-0537-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000225266
133 https://doi.org/10.1617/s11527-015-0537-2
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0016-7037(69)90108-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008109175
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.cemconres.2003.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016883962
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cemconres.2004.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015933179
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cemconres.2004.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021510639
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cemconres.2007.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022718241
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cemconres.2007.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002848701
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.cemconres.2011.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015009148
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.cemconres.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045844290
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.compositesa.2016.08.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867914
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.compositesb.2016.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022850626
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.conbuildmat.2011.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025572719
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.conbuildmat.2012.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026959173
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.conbuildmat.2013.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035866095
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.conbuildmat.2014.01.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025649704
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.conbuildmat.2014.05.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015437854
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.conbuildmat.2014.10.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025952904
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.conbuildmat.2015.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019734577
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.conbuildmat.2015.05.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051453551
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.conbuildmat.2016.03.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031281522
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.conbuildmat.2016.11.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029311431
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.conbuildmat.2017.04.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085198180
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.conbuildmat.2017.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086113390
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.firesaf.2008.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049755230
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.firesaf.2009.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033651184
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0008-8846(01)00558-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032123705
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0008-8846(99)00264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020025076
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0379-7112(03)00093-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037685938
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/jz067i012p04873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048232565
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1061/(asce)mt.1943-5533.0000335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057639351
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1061/(asce)mt.1943-5533.0001041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057640056
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1061/(asce)mt.1943-5533.0001647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057640661
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1680/macr.1992.44.161.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068237034
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2343/geochemj.19.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012386974
200 rdf:type schema:CreativeWork
201 https://doi.org/10.3390/nano8070465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105142830
202 rdf:type schema:CreativeWork
203 https://doi.org/10.5402/2011/856849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023163611
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.30055.33 schema:alternateName Dalian University of Technology
206 schema:name School of Civil Engineering, Dalian University of Technology, Dalian, China
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...