Forest Fire Smoke Detection Based on Visual Smoke Root and Diffusion Model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-28

AUTHORS

Yu Gao, Pengle Cheng

ABSTRACT

The damage caused by forest fire to forestry resources and economy is quite serious. As one of the most important characters of early forest fire, smoke is widely used as a signal of forest fire. In this paper, we propose a novel forest fire smoke detection method based on computer vision and diffusion model. Unlike the video-based methods that usually rely on image characters extraction, we try to find the shape of smoke that is at the generation stage. To combine vision and diffusion model together, the basic concept of smoke root is proposed. In the frame processing stage, none characters of fire smoke are extracted (like texture, color, frequency information etc.), and continuous frames are only used to extract stable points in dynamic areas as the smoke root candidate points. In the diffusion model simulation stage, all smoke root candidate points information is adopted by the model to generate the simulation smoke. Finally, the match algorithm based on color, dynamic areas and simulation smoke is implemented to get the final results. In order to reduce the complexity of computation, we ignored the simulation process of the smoke details, such as texture and turbulence, and only retained the contour features in two-dimensional form. Experiments show that under the condition of smoke root existing in the frames, the algorithm can obtain stable detection results and low false positive rate in cloudy scenes. More... »

PAGES

1-26

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-019-00831-x

DOI

http://dx.doi.org/10.1007/s10694-019-00831-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112477939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.66741.32", 
          "name": [
            "School of Technology, Beijing Forestry University, No. 35 East Tsinghua Road, 100083, Beijing, Haidian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.66741.32", 
          "name": [
            "School of Technology, Beijing Forestry University, No. 35 East Tsinghua Road, 100083, Beijing, Haidian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Pengle", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/311535.311548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015455772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2015.05.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016512366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/383259.383260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017619206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1968-0242392-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027150656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027359232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/357994.358023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030198768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/gmip.1996.0039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037359928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2016.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044207741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/wf02048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050783990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687286", 
          "https://doi.org/10.1023/b:visi.0000029664.99615.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2101613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/2200000006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1054661817010138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084223305", 
          "https://doi.org/10.1134/s1054661817010138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-017-1102-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085103968", 
          "https://doi.org/10.1007/s11760-017-1102-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-017-1102-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085103968", 
          "https://doi.org/10.1007/s11760-017-1102-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-161605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086201338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-017-0665-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086351650", 
          "https://doi.org/10.1007/s10694-017-0665-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-017-0665-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086351650", 
          "https://doi.org/10.1007/s10694-017-0665-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2747399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091480020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-017-0683-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092747097", 
          "https://doi.org/10.1007/s10694-017-0683-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcica.2016.7578611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093534144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iciicii.2016.0045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093879221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2012.6238924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094191922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcnm.2005.1544272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094491028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isoen.2017.7968889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094763647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2016.7793196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095650815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2017.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100899581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ic4me2.2018.8465661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107147809"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-28", 
    "datePublishedReg": "2019-02-28", 
    "description": "The damage caused by forest fire to forestry resources and economy is quite serious. As one of the most important characters of early forest fire, smoke is widely used as a signal of forest fire. In this paper, we propose a novel forest fire smoke detection method based on computer vision and diffusion model. Unlike the video-based methods that usually rely on image characters extraction, we try to find the shape of smoke that is at the generation stage. To combine vision and diffusion model together, the basic concept of smoke root is proposed. In the frame processing stage, none characters of fire smoke are extracted (like texture, color, frequency information etc.), and continuous frames are only used to extract stable points in dynamic areas as the smoke root candidate points. In the diffusion model simulation stage, all smoke root candidate points information is adopted by the model to generate the simulation smoke. Finally, the match algorithm based on color, dynamic areas and simulation smoke is implemented to get the final results. In order to reduce the complexity of computation, we ignored the simulation process of the smoke details, such as texture and turbulence, and only retained the contour features in two-dimensional form. Experiments show that under the condition of smoke root existing in the frames, the algorithm can obtain stable detection results and low false positive rate in cloudy scenes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-019-00831-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Forest Fire Smoke Detection Based on Visual Smoke Root and Diffusion Model", 
    "pagination": "1-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a82c952a3c106980570b19d52ec49961c054834eddbd5f7b161caadd0879c8f1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-019-00831-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112477939"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-019-00831-x", 
      "https://app.dimensions.ai/details/publication/pub.1112477939"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60366_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10694-019-00831-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00831-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00831-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00831-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00831-x'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      50 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-019-00831-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd4be738872774d2cbd9a79e14da16c90
4 schema:citation sg:pub.10.1007/s10694-017-0665-z
5 sg:pub.10.1007/s10694-017-0683-x
6 sg:pub.10.1007/s11760-017-1102-y
7 sg:pub.10.1023/b:visi.0000029664.99615.94
8 sg:pub.10.1134/s1054661817010138
9 https://doi.org/10.1006/gmip.1996.0039
10 https://doi.org/10.1016/j.firesaf.2011.03.003
11 https://doi.org/10.1016/j.firesaf.2016.08.004
12 https://doi.org/10.1016/j.ijleo.2015.05.082
13 https://doi.org/10.1016/j.proeng.2017.12.034
14 https://doi.org/10.1071/wf02048
15 https://doi.org/10.1090/s0025-5718-1968-0242392-2
16 https://doi.org/10.1109/access.2017.2747399
17 https://doi.org/10.1109/cvprw.2012.6238924
18 https://doi.org/10.1109/ic4me2.2018.8465661
19 https://doi.org/10.1109/iciicii.2016.0045
20 https://doi.org/10.1109/iecon.2016.7793196
21 https://doi.org/10.1109/isoen.2017.7968889
22 https://doi.org/10.1109/tip.2010.2101613
23 https://doi.org/10.1109/wcica.2016.7578611
24 https://doi.org/10.1109/wcnm.2005.1544272
25 https://doi.org/10.1145/311535.311548
26 https://doi.org/10.1145/357994.358023
27 https://doi.org/10.1145/383259.383260
28 https://doi.org/10.1561/2200000006
29 https://doi.org/10.3233/jifs-161605
30 schema:datePublished 2019-02-28
31 schema:datePublishedReg 2019-02-28
32 schema:description The damage caused by forest fire to forestry resources and economy is quite serious. As one of the most important characters of early forest fire, smoke is widely used as a signal of forest fire. In this paper, we propose a novel forest fire smoke detection method based on computer vision and diffusion model. Unlike the video-based methods that usually rely on image characters extraction, we try to find the shape of smoke that is at the generation stage. To combine vision and diffusion model together, the basic concept of smoke root is proposed. In the frame processing stage, none characters of fire smoke are extracted (like texture, color, frequency information etc.), and continuous frames are only used to extract stable points in dynamic areas as the smoke root candidate points. In the diffusion model simulation stage, all smoke root candidate points information is adopted by the model to generate the simulation smoke. Finally, the match algorithm based on color, dynamic areas and simulation smoke is implemented to get the final results. In order to reduce the complexity of computation, we ignored the simulation process of the smoke details, such as texture and turbulence, and only retained the contour features in two-dimensional form. Experiments show that under the condition of smoke root existing in the frames, the algorithm can obtain stable detection results and low false positive rate in cloudy scenes.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1122008
37 schema:name Forest Fire Smoke Detection Based on Visual Smoke Root and Diffusion Model
38 schema:pagination 1-26
39 schema:productId N2edc55744fa441f0a9ae10f971a07014
40 N43c5206615144c6c8c1bc141bccd6ce8
41 N9c54cf5cc84145f580444fedf7e7d72b
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112477939
43 https://doi.org/10.1007/s10694-019-00831-x
44 schema:sdDatePublished 2019-04-11T11:04
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nabb3942c99c54be4a9740dddb4f1a742
47 schema:url https://link.springer.com/10.1007%2Fs10694-019-00831-x
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N06c36c7daacb463fb0f0d53b6d9bd31a schema:affiliation https://www.grid.ac/institutes/grid.66741.32
52 schema:familyName Cheng
53 schema:givenName Pengle
54 rdf:type schema:Person
55 N2edc55744fa441f0a9ae10f971a07014 schema:name doi
56 schema:value 10.1007/s10694-019-00831-x
57 rdf:type schema:PropertyValue
58 N43c5206615144c6c8c1bc141bccd6ce8 schema:name dimensions_id
59 schema:value pub.1112477939
60 rdf:type schema:PropertyValue
61 N83a0c07baa084e15be63da977f40fd84 schema:affiliation https://www.grid.ac/institutes/grid.66741.32
62 schema:familyName Gao
63 schema:givenName Yu
64 rdf:type schema:Person
65 N9c54cf5cc84145f580444fedf7e7d72b schema:name readcube_id
66 schema:value a82c952a3c106980570b19d52ec49961c054834eddbd5f7b161caadd0879c8f1
67 rdf:type schema:PropertyValue
68 Naa96df63695a4c9fbd4956d4c6f41da7 rdf:first N06c36c7daacb463fb0f0d53b6d9bd31a
69 rdf:rest rdf:nil
70 Nabb3942c99c54be4a9740dddb4f1a742 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nd4be738872774d2cbd9a79e14da16c90 rdf:first N83a0c07baa084e15be63da977f40fd84
73 rdf:rest Naa96df63695a4c9fbd4956d4c6f41da7
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:journal.1122008 schema:issn 0015-2684
81 1572-8099
82 schema:name Fire Technology
83 rdf:type schema:Periodical
84 sg:pub.10.1007/s10694-017-0665-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1086351650
85 https://doi.org/10.1007/s10694-017-0665-z
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10694-017-0683-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092747097
88 https://doi.org/10.1007/s10694-017-0683-x
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11760-017-1102-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085103968
91 https://doi.org/10.1007/s11760-017-1102-y
92 rdf:type schema:CreativeWork
93 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
94 https://doi.org/10.1023/b:visi.0000029664.99615.94
95 rdf:type schema:CreativeWork
96 sg:pub.10.1134/s1054661817010138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084223305
97 https://doi.org/10.1134/s1054661817010138
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1006/gmip.1996.0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037359928
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.firesaf.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027359232
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.firesaf.2016.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044207741
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.ijleo.2015.05.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016512366
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.proeng.2017.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100899581
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1071/wf02048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050783990
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/s0025-5718-1968-0242392-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027150656
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/access.2017.2747399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091480020
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/cvprw.2012.6238924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094191922
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/ic4me2.2018.8465661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107147809
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/iciicii.2016.0045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093879221
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/iecon.2016.7793196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095650815
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/isoen.2017.7968889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094763647
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tip.2010.2101613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642729
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/wcica.2016.7578611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093534144
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/wcnm.2005.1544272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094491028
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/311535.311548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015455772
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/357994.358023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030198768
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/383259.383260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017619206
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1561/2200000006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001401
138 rdf:type schema:CreativeWork
139 https://doi.org/10.3233/jifs-161605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086201338
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.66741.32 schema:alternateName Beijing Forestry University
142 schema:name School of Technology, Beijing Forestry University, No. 35 East Tsinghua Road, 100083, Beijing, Haidian, China
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...