Optimal Safe Layout of Fuel Storage Tanks Exposed to Pool Fire: One Dimensional Deterministic Modelling Approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-21

AUTHORS

Angan Sengupta

ABSTRACT

Fire hazard is one of the main risks associated to fuel storage tanks in petroleum and in the petrochemical industries. Such a hazard includes pool fires in the storage tanks or in the bunds, fire propagation from the source tank to target tanks both in absence and in presence of wind, and also the cascading/domino effect due to confined and unconfined vapour cloud explosion and or BLEVE associated with the source tank. In the present work, a radiation shield of flowing water has been introduced at a distance from the source fuel storage tank to prevent the domino effect originating from this source tank, under fire, to the target fuel storage tanks in a tank farm. A simple one dimensional model has been developed from the steady state energy balance to simulate the safe distances (i.e. rim–rim distance) between fuel storage tanks containing class-I fuel (e.g. gasoline), both in presence and absence of a water-shield under no-wind and cross-wind conditions. The model predictions have shown that the maximum safe inter-tank separation distance of 28.42 m is anticipated at a wind velocity of 6 m/s, compared to 16.34 m in no-wind condition, beyond which the centroid of the parallelepiped (a solid-flame geometry) falls outside the base of the tilted flame geometry causing flattening of flame and a very sluggish increase in the flame tilt angle as the inverse of the Richardson number in the presence of wind velocity vector increases. Furthermore, the present one dimensional mathematical model has also been extended to show that introduction of a water-shield with an appropriate thickness (δopt) is able to prevent the propagation of radiation heat flux under both no-wind and cross-wind conditions to a much lower distance close to 8.34 m between tanks (measured from the centre of the source tank), than those predicted from the existing empirical models; viz. Point Source model and Shokrie-Beyler’s model. More... »

PAGES

1-29

References to SciGraph publications

  • 1983-11. Estimating large pool fire burning rates in FIRE TECHNOLOGY
  • 1991-02. The interaction of wind and fire in BOUNDARY-LAYER METEOROLOGY
  • 2016. Properties of Building Materials in SFPE HANDBOOK OF FIRE PROTECTION ENGINEERING
  • 2016. SFPE Handbook of Fire Protection Engineering in NONE
  • Journal

    TITLE

    Fire Technology

    ISSUE

    N/A

    VOLUME

    N/A

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10694-019-00830-y

    DOI

    http://dx.doi.org/10.1007/s10694-019-00830-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112283104


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Birla Institute of Technology and Science", 
              "id": "https://www.grid.ac/institutes/grid.418391.6", 
              "name": [
                "Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, 500078, Hyderabad, Telengana, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sengupta", 
            "givenName": "Angan", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.firesaf.2008.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001324845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2012.10.075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007678279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(75)90243-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008471728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(75)90243-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008471728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0082-0784(63)80091-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009570800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0082-0784(79)80097-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009985934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.firesaf.2014.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010219108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proeng.2016.01.122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011333257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jlp.2010.06.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011663295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.expthermflusci.2016.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013829058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ress.2014.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015154994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/wf02052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016333628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0950-4230(92)80021-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019844261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020670033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2013.03.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020898228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.firesaf.2015.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021728781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00183958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021738244", 
              "https://doi.org/10.1007/bf00183958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jlp.2016.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022869853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.firesaf.2015.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024926543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2565-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025988933", 
              "https://doi.org/10.1007/978-1-4939-2565-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2565-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025988933", 
              "https://doi.org/10.1007/978-1-4939-2565-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1966.0118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026836466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.combustflame.2012.10.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030573890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/risa.12158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031146504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ress.2015.04.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036613164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2014.06.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039203662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.combustflame.2010.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042575669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2016.08.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045782595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2016.08.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045782595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2565-0_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047699993", 
              "https://doi.org/10.1007/978-1-4939-2565-0_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-7112(84)90005-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050250986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02380810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050380310", 
              "https://doi.org/10.1007/bf02380810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02380810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050380310", 
              "https://doi.org/10.1007/bf02380810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3246887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062111967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3449836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062127582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/revce-2016-0006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067555924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3801/iafss.fss.6-115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071435988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.firesaf.2017.05.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085444091"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-21", 
        "datePublishedReg": "2019-02-21", 
        "description": "Fire hazard is one of the main risks associated to fuel storage tanks in petroleum and in the petrochemical industries. Such a hazard includes pool fires in the storage tanks or in the bunds, fire propagation from the source tank to target tanks both in absence and in presence of wind, and also the cascading/domino effect due to confined and unconfined vapour cloud explosion and or BLEVE associated with the source tank. In the present work, a radiation shield of flowing water has been introduced at a distance from the source fuel storage tank to prevent the domino effect originating from this source tank, under fire, to the target fuel storage tanks in a tank farm. A simple one dimensional model has been developed from the steady state energy balance to simulate the safe distances (i.e. rim\u2013rim distance) between fuel storage tanks containing class-I fuel (e.g. gasoline), both in presence and absence of a water-shield under no-wind and cross-wind conditions. The model predictions have shown that the maximum safe inter-tank separation distance of 28.42 m is anticipated at a wind velocity of 6 m/s, compared to 16.34 m in no-wind condition, beyond which the centroid of the parallelepiped (a solid-flame geometry) falls outside the base of the tilted flame geometry causing flattening of flame and a very sluggish increase in the flame tilt angle as the inverse of the Richardson number in the presence of wind velocity vector increases. Furthermore, the present one dimensional mathematical model has also been extended to show that introduction of a water-shield with an appropriate thickness (\u03b4opt) is able to prevent the propagation of radiation heat flux under both no-wind and cross-wind conditions to a much lower distance close to 8.34 m between tanks (measured from the centre of the source tank), than those predicted from the existing empirical models; viz. Point Source model and Shokrie-Beyler\u2019s model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10694-019-00830-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1122008", 
            "issn": [
              "0015-2684", 
              "1572-8099"
            ], 
            "name": "Fire Technology", 
            "type": "Periodical"
          }
        ], 
        "name": "Optimal Safe Layout of Fuel Storage Tanks Exposed to Pool Fire: One Dimensional Deterministic Modelling Approach", 
        "pagination": "1-29", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0a069095c7610ad8317d20e5ea3261d00cd3effee39e9e52f41fb67e3a22a77a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10694-019-00830-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112283104"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10694-019-00830-y", 
          "https://app.dimensions.ai/details/publication/pub.1112283104"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10694-019-00830-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00830-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00830-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00830-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00830-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      21 PREDICATES      58 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10694-019-00830-y schema:about anzsrc-for:09
    2 anzsrc-for:0907
    3 schema:author Ne5d6c326fa1d490d83099a8366f6f1d1
    4 schema:citation sg:pub.10.1007/978-1-4939-2565-0
    5 sg:pub.10.1007/978-1-4939-2565-0_9
    6 sg:pub.10.1007/bf00183958
    7 sg:pub.10.1007/bf02380810
    8 https://doi.org/10.1016/0017-9310(75)90243-4
    9 https://doi.org/10.1016/0379-7112(84)90005-5
    10 https://doi.org/10.1016/0950-4230(92)80021-y
    11 https://doi.org/10.1016/j.combustflame.2010.10.013
    12 https://doi.org/10.1016/j.combustflame.2012.10.016
    13 https://doi.org/10.1016/j.expthermflusci.2016.11.010
    14 https://doi.org/10.1016/j.firesaf.2008.01.001
    15 https://doi.org/10.1016/j.firesaf.2014.08.010
    16 https://doi.org/10.1016/j.firesaf.2015.04.009
    17 https://doi.org/10.1016/j.firesaf.2015.08.004
    18 https://doi.org/10.1016/j.firesaf.2017.05.008
    19 https://doi.org/10.1016/j.fuel.2012.10.075
    20 https://doi.org/10.1016/j.fuel.2013.03.025
    21 https://doi.org/10.1016/j.jhazmat.2015.12.006
    22 https://doi.org/10.1016/j.jlp.2010.06.016
    23 https://doi.org/10.1016/j.jlp.2016.01.020
    24 https://doi.org/10.1016/j.proci.2014.06.074
    25 https://doi.org/10.1016/j.proci.2016.08.021
    26 https://doi.org/10.1016/j.proeng.2016.01.122
    27 https://doi.org/10.1016/j.ress.2014.02.005
    28 https://doi.org/10.1016/j.ress.2015.04.015
    29 https://doi.org/10.1016/s0082-0784(63)80091-0
    30 https://doi.org/10.1016/s0082-0784(79)80097-1
    31 https://doi.org/10.1071/wf02052
    32 https://doi.org/10.1098/rspa.1966.0118
    33 https://doi.org/10.1111/risa.12158
    34 https://doi.org/10.1115/1.3246887
    35 https://doi.org/10.1115/1.3449836
    36 https://doi.org/10.1515/revce-2016-0006
    37 https://doi.org/10.3801/iafss.fss.6-115
    38 schema:datePublished 2019-02-21
    39 schema:datePublishedReg 2019-02-21
    40 schema:description Fire hazard is one of the main risks associated to fuel storage tanks in petroleum and in the petrochemical industries. Such a hazard includes pool fires in the storage tanks or in the bunds, fire propagation from the source tank to target tanks both in absence and in presence of wind, and also the cascading/domino effect due to confined and unconfined vapour cloud explosion and or BLEVE associated with the source tank. In the present work, a radiation shield of flowing water has been introduced at a distance from the source fuel storage tank to prevent the domino effect originating from this source tank, under fire, to the target fuel storage tanks in a tank farm. A simple one dimensional model has been developed from the steady state energy balance to simulate the safe distances (i.e. rim–rim distance) between fuel storage tanks containing class-I fuel (e.g. gasoline), both in presence and absence of a water-shield under no-wind and cross-wind conditions. The model predictions have shown that the maximum safe inter-tank separation distance of 28.42 m is anticipated at a wind velocity of 6 m/s, compared to 16.34 m in no-wind condition, beyond which the centroid of the parallelepiped (a solid-flame geometry) falls outside the base of the tilted flame geometry causing flattening of flame and a very sluggish increase in the flame tilt angle as the inverse of the Richardson number in the presence of wind velocity vector increases. Furthermore, the present one dimensional mathematical model has also been extended to show that introduction of a water-shield with an appropriate thickness (δopt) is able to prevent the propagation of radiation heat flux under both no-wind and cross-wind conditions to a much lower distance close to 8.34 m between tanks (measured from the centre of the source tank), than those predicted from the existing empirical models; viz. Point Source model and Shokrie-Beyler’s model.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf sg:journal.1122008
    45 schema:name Optimal Safe Layout of Fuel Storage Tanks Exposed to Pool Fire: One Dimensional Deterministic Modelling Approach
    46 schema:pagination 1-29
    47 schema:productId N6349949da6774774b312e71b20cbaa29
    48 Na292fd3a49b14affb176f8927cddf3ed
    49 Nb94329de92c14ac38e714997a552e9ec
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112283104
    51 https://doi.org/10.1007/s10694-019-00830-y
    52 schema:sdDatePublished 2019-04-11T09:42
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N275ed24c131045aebebc5281b5124abe
    55 schema:url https://link.springer.com/10.1007%2Fs10694-019-00830-y
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N275ed24c131045aebebc5281b5124abe schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N6349949da6774774b312e71b20cbaa29 schema:name readcube_id
    62 schema:value 0a069095c7610ad8317d20e5ea3261d00cd3effee39e9e52f41fb67e3a22a77a
    63 rdf:type schema:PropertyValue
    64 Na292fd3a49b14affb176f8927cddf3ed schema:name doi
    65 schema:value 10.1007/s10694-019-00830-y
    66 rdf:type schema:PropertyValue
    67 Nb94329de92c14ac38e714997a552e9ec schema:name dimensions_id
    68 schema:value pub.1112283104
    69 rdf:type schema:PropertyValue
    70 Nbb503017e1d04216aeb71e9c39c87033 schema:affiliation https://www.grid.ac/institutes/grid.418391.6
    71 schema:familyName Sengupta
    72 schema:givenName Angan
    73 rdf:type schema:Person
    74 Ne5d6c326fa1d490d83099a8366f6f1d1 rdf:first Nbb503017e1d04216aeb71e9c39c87033
    75 rdf:rest rdf:nil
    76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Engineering
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Environmental Engineering
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1122008 schema:issn 0015-2684
    83 1572-8099
    84 schema:name Fire Technology
    85 rdf:type schema:Periodical
    86 sg:pub.10.1007/978-1-4939-2565-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025988933
    87 https://doi.org/10.1007/978-1-4939-2565-0
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-1-4939-2565-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047699993
    90 https://doi.org/10.1007/978-1-4939-2565-0_9
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf00183958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021738244
    93 https://doi.org/10.1007/bf00183958
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf02380810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050380310
    96 https://doi.org/10.1007/bf02380810
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/0017-9310(75)90243-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008471728
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/0379-7112(84)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050250986
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0950-4230(92)80021-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019844261
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.combustflame.2010.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042575669
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.combustflame.2012.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030573890
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.expthermflusci.2016.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013829058
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.firesaf.2008.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001324845
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.firesaf.2014.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010219108
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.firesaf.2015.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021728781
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.firesaf.2015.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024926543
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.firesaf.2017.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085444091
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.fuel.2012.10.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007678279
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.fuel.2013.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020898228
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.jhazmat.2015.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020670033
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.jlp.2010.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011663295
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.jlp.2016.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022869853
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.proci.2014.06.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039203662
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.proci.2016.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045782595
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.proeng.2016.01.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011333257
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.ress.2014.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015154994
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.ress.2015.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036613164
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/s0082-0784(63)80091-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009570800
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/s0082-0784(79)80097-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009985934
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1071/wf02052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016333628
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1098/rspa.1966.0118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026836466
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1111/risa.12158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031146504
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1115/1.3246887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062111967
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1115/1.3449836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062127582
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1515/revce-2016-0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067555924
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.3801/iafss.fss.6-115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071435988
    157 rdf:type schema:CreativeWork
    158 https://www.grid.ac/institutes/grid.418391.6 schema:alternateName Birla Institute of Technology and Science
    159 schema:name Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, 500078, Hyderabad, Telengana, India
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...