Experimental Evaluation of Protecting High-Voltage Electrical Transformers Using Water Mist with and without Additives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-25

AUTHORS

JiaZheng Lu, Bao-Hui Chen, Ping Liang, Yicheng Sun, Zhen Fang, Shoudao Huang

ABSTRACT

Suppression of high-voltage (HV) electrical fires is difficult because it requires fire-extinguishing agents with good isolation properties as well as high fire-suppression efficiency. In the work presented herein, water mist with and without various water mist additives (WMAs) was utilized to suppress HV transformer oil fires. The WMAs included ionic alkali-metal salt and fluorocarbon surfactant, and nonionic hydrocarbon and fluorocarbon surfactants. At the same concentration, the surfactants were more efficient at extinguishing fires compared with the alkali-metal salt. The fluorocarbon surfactant was more efficient at extinguishing fires than the hydrocarbon surfactant, achieving flame extinction in 18 % of the time required when using natural water (NW). Besides, the effects of WMAs on the insulating properties of the water mist were studied. The gap breakdown test showed that the NW mist could increase the breakdown voltage of air by up to 5 % at 70-cm gap distance. Comparatively, the nonionic WMAs did not affect the insulating property of the NW mist, with the mist containing 1.0 % ionic KHCO3 solution enabling a reduction of up to 16 % in the breakdown at 70-cm gap distance while increasing the leakage current of the simulated insulator by up to 250 % at its nominal voltage. Finally, field tests were performed where NW mists were discharged onto a charged 220-kV high-voltage transformer. This study proves that NW mist and mists with nonionic WMAs are suitable for protecting HV electrical equipment, having important implications for extending the applications of water mist. More... »

PAGES

1-20

References to SciGraph publications

Journal

TITLE

Fire Technology

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-019-00825-9

DOI

http://dx.doi.org/10.1007/s10694-019-00825-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112382532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "JiaZheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Bao-Hui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Ping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Yicheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Zhen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Electrical and Information Engineering, Hunan University, 410020, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Shoudao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.firesaf.2006.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004810113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012720831429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009507226", 
          "https://doi.org/10.1023/a:1012720831429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/35/17/313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013368385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-008-0068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014361767", 
          "https://doi.org/10.1007/s10694-008-0068-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2013.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018890327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2013.08.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020332247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:fire.0000039161.18616.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022191506", 
          "https://doi.org/10.1023/b:fire.0000039161.18616.86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2014.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027992136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2014.10.468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028946806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015322428719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524747", 
          "https://doi.org/10.1023/a:1015322428719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-013-0623-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038369115", 
          "https://doi.org/10.1007/s11630-013-0623-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-011-0511-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039670435", 
          "https://doi.org/10.1007/s11630-011-0511-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-011-0511-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039670435", 
          "https://doi.org/10.1007/s11630-011-0511-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0963-0252/18/3/035009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045185232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0963-0252/18/3/035009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045185232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2011.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046976967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2005.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046987951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0734904115618220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053961371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0734904115618220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053961371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdei.2013.6508754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061582744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tps.2010.2051687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061766534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0734904116659499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063844914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0734904116659499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063844914"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-25", 
    "datePublishedReg": "2019-02-25", 
    "description": "Suppression of high-voltage (HV) electrical fires is difficult because it requires fire-extinguishing agents with good isolation properties as well as high fire-suppression efficiency. In the work presented herein, water mist with and without various water mist additives (WMAs) was utilized to suppress HV transformer oil fires. The WMAs included ionic alkali-metal salt and fluorocarbon surfactant, and nonionic hydrocarbon and fluorocarbon surfactants. At the same concentration, the surfactants were more efficient at extinguishing fires compared with the alkali-metal salt. The fluorocarbon surfactant was more efficient at extinguishing fires than the hydrocarbon surfactant, achieving flame extinction in 18 % of the time required when using natural water (NW). Besides, the effects of WMAs on the insulating properties of the water mist were studied. The gap breakdown test showed that the NW mist could increase the breakdown voltage of air by up to 5 % at 70-cm gap distance. Comparatively, the nonionic WMAs did not affect the insulating property of the NW mist, with the mist containing 1.0 % ionic KHCO3 solution enabling a reduction of up to 16 % in the breakdown at 70-cm gap distance while increasing the leakage current of the simulated insulator by up to 250 % at its nominal voltage. Finally, field tests were performed where NW mists were discharged onto a charged 220-kV high-voltage transformer. This study proves that NW mist and mists with nonionic WMAs are suitable for protecting HV electrical equipment, having important implications for extending the applications of water mist.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-019-00825-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Experimental Evaluation of Protecting High-Voltage Electrical Transformers Using Water Mist with and without Additives", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7424a2a024aecf7c39d454bca105b3728fcb564dd315521b7f5eec4a45b3715e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-019-00825-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112382532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-019-00825-9", 
      "https://app.dimensions.ai/details/publication/pub.1112382532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10694-019-00825-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00825-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00825-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00825-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-019-00825-9'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-019-00825-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ncc7545454b5645a2a4309c79f0209748
4 schema:citation sg:pub.10.1007/s10694-008-0068-2
5 sg:pub.10.1007/s11630-011-0511-4
6 sg:pub.10.1007/s11630-013-0623-0
7 sg:pub.10.1023/a:1012720831429
8 sg:pub.10.1023/a:1015322428719
9 sg:pub.10.1023/b:fire.0000039161.18616.86
10 https://doi.org/10.1016/j.applthermaleng.2011.07.034
11 https://doi.org/10.1016/j.firesaf.2005.08.004
12 https://doi.org/10.1016/j.firesaf.2006.06.008
13 https://doi.org/10.1016/j.firesaf.2013.03.003
14 https://doi.org/10.1016/j.jhazmat.2014.11.016
15 https://doi.org/10.1016/j.proeng.2013.08.070
16 https://doi.org/10.1016/j.proeng.2014.10.468
17 https://doi.org/10.1088/0022-3727/35/17/313
18 https://doi.org/10.1088/0963-0252/18/3/035009
19 https://doi.org/10.1109/tdei.2013.6508754
20 https://doi.org/10.1109/tps.2010.2051687
21 https://doi.org/10.1177/0734904115618220
22 https://doi.org/10.1177/0734904116659499
23 schema:datePublished 2019-02-25
24 schema:datePublishedReg 2019-02-25
25 schema:description Suppression of high-voltage (HV) electrical fires is difficult because it requires fire-extinguishing agents with good isolation properties as well as high fire-suppression efficiency. In the work presented herein, water mist with and without various water mist additives (WMAs) was utilized to suppress HV transformer oil fires. The WMAs included ionic alkali-metal salt and fluorocarbon surfactant, and nonionic hydrocarbon and fluorocarbon surfactants. At the same concentration, the surfactants were more efficient at extinguishing fires compared with the alkali-metal salt. The fluorocarbon surfactant was more efficient at extinguishing fires than the hydrocarbon surfactant, achieving flame extinction in 18 % of the time required when using natural water (NW). Besides, the effects of WMAs on the insulating properties of the water mist were studied. The gap breakdown test showed that the NW mist could increase the breakdown voltage of air by up to 5 % at 70-cm gap distance. Comparatively, the nonionic WMAs did not affect the insulating property of the NW mist, with the mist containing 1.0 % ionic KHCO3 solution enabling a reduction of up to 16 % in the breakdown at 70-cm gap distance while increasing the leakage current of the simulated insulator by up to 250 % at its nominal voltage. Finally, field tests were performed where NW mists were discharged onto a charged 220-kV high-voltage transformer. This study proves that NW mist and mists with nonionic WMAs are suitable for protecting HV electrical equipment, having important implications for extending the applications of water mist.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1122008
30 schema:name Experimental Evaluation of Protecting High-Voltage Electrical Transformers Using Water Mist with and without Additives
31 schema:pagination 1-20
32 schema:productId Na1c0fe822a094c51a69fe46f074cda4b
33 Ncda8480d22304f47bee265f406196975
34 Nd3652679c1b94910a9869ed300bb1ef0
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112382532
36 https://doi.org/10.1007/s10694-019-00825-9
37 schema:sdDatePublished 2019-04-11T10:03
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N976452a5a9ba47bda5f7e81e6bcb5413
40 schema:url https://link.springer.com/10.1007%2Fs10694-019-00825-9
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N01a06308547d4f458700826b9bb3593a rdf:first N444dde5d5218478d9bcbb3aebaec6c33
45 rdf:rest Nb61174f2832547ca9ef84fba6f6814dc
46 N1c3dc31ed2964ce7af02bd1cd9115281 schema:affiliation N741983cf3c6040c2ba3225014996e8a7
47 schema:familyName Liang
48 schema:givenName Ping
49 rdf:type schema:Person
50 N21e43da969a14ffa9e97d059afd807bb schema:affiliation N603d599170234670b99d7117b9e815a4
51 schema:familyName Chen
52 schema:givenName Bao-Hui
53 rdf:type schema:Person
54 N26cb61fd29f64ba7b80b505d7892326c schema:affiliation Ne94c4c0b209a421dbb88a66dc8107835
55 schema:familyName Lu
56 schema:givenName JiaZheng
57 rdf:type schema:Person
58 N444dde5d5218478d9bcbb3aebaec6c33 schema:affiliation Nad00ec97e93b43879b4c72e0b7fc2cb9
59 schema:familyName Fang
60 schema:givenName Zhen
61 rdf:type schema:Person
62 N603d599170234670b99d7117b9e815a4 schema:name State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China
63 rdf:type schema:Organization
64 N6caec277c48a47caafb57b9ef38f0dc1 rdf:first Nbcb7f1de9517439cbfebc8942c71f727
65 rdf:rest N01a06308547d4f458700826b9bb3593a
66 N741983cf3c6040c2ba3225014996e8a7 schema:name State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China
67 rdf:type schema:Organization
68 N976452a5a9ba47bda5f7e81e6bcb5413 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N99474ab687664a34ab01d723b047cc05 rdf:first N1c3dc31ed2964ce7af02bd1cd9115281
71 rdf:rest N6caec277c48a47caafb57b9ef38f0dc1
72 Na1c0fe822a094c51a69fe46f074cda4b schema:name doi
73 schema:value 10.1007/s10694-019-00825-9
74 rdf:type schema:PropertyValue
75 Nad00ec97e93b43879b4c72e0b7fc2cb9 schema:name State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China
76 rdf:type schema:Organization
77 Nb61174f2832547ca9ef84fba6f6814dc rdf:first Nc623a32c399640b5aa874e29de6ae5f0
78 rdf:rest rdf:nil
79 Nbcb7f1de9517439cbfebc8942c71f727 schema:affiliation Nde8904cdaea84f3a94bf902db7a2ceff
80 schema:familyName Sun
81 schema:givenName Yicheng
82 rdf:type schema:Person
83 Nc623a32c399640b5aa874e29de6ae5f0 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
84 schema:familyName Huang
85 schema:givenName Shoudao
86 rdf:type schema:Person
87 Ncc7545454b5645a2a4309c79f0209748 rdf:first N26cb61fd29f64ba7b80b505d7892326c
88 rdf:rest Ne20aa2f885c64f8fb701d840a168d1c2
89 Ncda8480d22304f47bee265f406196975 schema:name readcube_id
90 schema:value 7424a2a024aecf7c39d454bca105b3728fcb564dd315521b7f5eec4a45b3715e
91 rdf:type schema:PropertyValue
92 Nd3652679c1b94910a9869ed300bb1ef0 schema:name dimensions_id
93 schema:value pub.1112382532
94 rdf:type schema:PropertyValue
95 Nde8904cdaea84f3a94bf902db7a2ceff schema:name State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China
96 rdf:type schema:Organization
97 Ne20aa2f885c64f8fb701d840a168d1c2 rdf:first N21e43da969a14ffa9e97d059afd807bb
98 rdf:rest N99474ab687664a34ab01d723b047cc05
99 Ne94c4c0b209a421dbb88a66dc8107835 schema:name State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Hunan Electric Power Corporation Disaster Prevention and Reduction Center, 410007, Changsha, China
100 rdf:type schema:Organization
101 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
102 schema:name Chemical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Chemistry (incl. Structural)
106 rdf:type schema:DefinedTerm
107 sg:journal.1122008 schema:issn 0015-2684
108 1572-8099
109 schema:name Fire Technology
110 rdf:type schema:Periodical
111 sg:pub.10.1007/s10694-008-0068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014361767
112 https://doi.org/10.1007/s10694-008-0068-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11630-011-0511-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039670435
115 https://doi.org/10.1007/s11630-011-0511-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11630-013-0623-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038369115
118 https://doi.org/10.1007/s11630-013-0623-0
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/a:1012720831429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507226
121 https://doi.org/10.1023/a:1012720831429
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1015322428719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524747
124 https://doi.org/10.1023/a:1015322428719
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/b:fire.0000039161.18616.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022191506
127 https://doi.org/10.1023/b:fire.0000039161.18616.86
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.applthermaleng.2011.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046976967
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.firesaf.2005.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046987951
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.firesaf.2006.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004810113
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.firesaf.2013.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018890327
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jhazmat.2014.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027992136
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.proeng.2013.08.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020332247
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.proeng.2014.10.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028946806
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0022-3727/35/17/313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013368385
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/0963-0252/18/3/035009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045185232
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tdei.2013.6508754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061582744
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tps.2010.2051687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061766534
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1177/0734904115618220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053961371
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1177/0734904116659499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063844914
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
156 schema:name College of Electrical and Information Engineering, Hunan University, 410020, Changsha, China
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...