Efficient Flame Detection Based on Static and Dynamic Texture Analysis in Forest Fire Detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

C. Emmy Prema, S. S. Vinsley, S. Suresh

ABSTRACT

Flame detection is a specialized task in fire detection and forest fire monitoring systems. In this paper, a static and dynamic texture analysis of flame in forest fire detection is proposed. The flames are initially segmented, based on the color in YCbCr (luminance, chrominance blue and chrominance red components) color space called candidate flame region. From the candidate flame region, the static and dynamic texture features are extracted. Static texture features are obtained by hybrid texture descriptors. Dynamic texture features are derived using 2D wavelet decomposition in temporal domain and 3D volumetric wavelet decomposition. Finally, extreme learning machine classifier is used to classify the candidate flame region as real flame or non-flame, based on the extracted texture features. The proposed flame detection system is applied to various fire detection scenes, in the real environments and it effectively distinguishes fire from fire-colored moving objects. The results show that the proposed fire detection technique achieves the average detection rate of 95.65% which is better compared to other state-of-art methods. More... »

PAGES

255-288

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-017-0683-x

DOI

http://dx.doi.org/10.1007/s10694-017-0683-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092747097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering, Bethlahem Institute of Engineering, 629157, Karungal, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emmy Prema", 
        "givenName": "C.", 
        "id": "sg:person.011334403051.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334403051.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering, Lourdes Mount College of Engineering and Technology, 629 195, Marthandam, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vinsley", 
        "givenName": "S. S.", 
        "id": "sg:person.07714342053.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714342053.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mechanical Engineering, University College of Engineering, 629 004, Nagercoil, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suresh", 
        "givenName": "S.", 
        "id": "sg:person.015647132651.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647132651.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003143961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2008.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003839334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008014656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008014656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021669406132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008692516", 
          "https://doi.org/10.1023/a:1021669406132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2009.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013419526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-016-0580-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014587934", 
          "https://doi.org/10.1007/s10694-016-0580-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2006.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021178562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2016.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023423844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2012.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026359332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027505371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027605614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2010.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028060171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028370585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2011.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028629933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2014.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035040705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2012.08.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036557372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-010-0163-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039034194", 
          "https://doi.org/10.1007/s11760-010-0163-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(02)00390-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041018891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042237435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-011-0369-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042641374", 
          "https://doi.org/10.1007/s00138-011-0369-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2006.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043898027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047445430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2012.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049326644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2013.08.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050821724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.661502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2011.2177182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061575879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2014.2339592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14569/ijarai.2014.030203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067340591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4156/jcit.vol7.issue21.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072282372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2012.6467333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095752810"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "Flame detection is a specialized task in fire detection and forest fire monitoring systems. In this paper, a static and dynamic texture analysis of flame in forest fire detection is proposed. The flames are initially segmented, based on the color in YCbCr (luminance, chrominance blue and chrominance red components) color space called candidate flame region. From the candidate flame region, the static and dynamic texture features are extracted. Static texture features are obtained by hybrid texture descriptors. Dynamic texture features are derived using 2D wavelet decomposition in temporal domain and 3D volumetric wavelet decomposition. Finally, extreme learning machine classifier is used to classify the candidate flame region as real flame or non-flame, based on the extracted texture features. The proposed flame detection system is applied to various fire detection scenes, in the real environments and it effectively distinguishes fire from fire-colored moving objects. The results show that the proposed fire detection technique achieves the average detection rate of 95.65% which is better compared to other state-of-art methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-017-0683-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Efficient Flame Detection Based on Static and Dynamic Texture Analysis in Forest Fire Detection", 
    "pagination": "255-288", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "675d663026faa8c1035d1c50312375dbf4b2df856eeac211edd5a9e1f6c2b567"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-017-0683-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092747097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-017-0683-x", 
      "https://app.dimensions.ai/details/publication/pub.1092747097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10694-017-0683-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0683-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0683-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0683-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0683-x'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-017-0683-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne3509c05fe1e464e92b39063e91a0c74
4 schema:citation sg:pub.10.1007/s00138-011-0369-1
5 sg:pub.10.1007/s10694-016-0580-8
6 sg:pub.10.1007/s11760-010-0163-y
7 sg:pub.10.1023/a:1021669406132
8 https://doi.org/10.1016/j.asoc.2015.03.039
9 https://doi.org/10.1016/j.asoc.2015.06.009
10 https://doi.org/10.1016/j.buildenv.2009.10.017
11 https://doi.org/10.1016/j.compeleceng.2011.09.011
12 https://doi.org/10.1016/j.engappai.2012.05.007
13 https://doi.org/10.1016/j.eswa.2016.02.019
14 https://doi.org/10.1016/j.firesaf.2006.02.001
15 https://doi.org/10.1016/j.firesaf.2008.05.005
16 https://doi.org/10.1016/j.firesaf.2010.04.001
17 https://doi.org/10.1016/j.firesaf.2014.03.001
18 https://doi.org/10.1016/j.ins.2013.06.041
19 https://doi.org/10.1016/j.jvcir.2006.12.003
20 https://doi.org/10.1016/j.neucom.2012.10.017
21 https://doi.org/10.1016/j.neucom.2015.05.024
22 https://doi.org/10.1016/j.patcog.2012.02.002
23 https://doi.org/10.1016/j.patrec.2005.06.015
24 https://doi.org/10.1016/j.patrec.2006.05.008
25 https://doi.org/10.1016/j.proeng.2012.08.209
26 https://doi.org/10.1016/j.proeng.2013.08.140
27 https://doi.org/10.1016/s0167-8655(02)00390-2
28 https://doi.org/10.1109/18.661502
29 https://doi.org/10.1109/icip.2012.6467333
30 https://doi.org/10.1109/tcsvt.2011.2177182
31 https://doi.org/10.1109/tcsvt.2014.2339592
32 https://doi.org/10.1109/tpami.2002.1017623
33 https://doi.org/10.14569/ijarai.2014.030203
34 https://doi.org/10.4156/jcit.vol7.issue21.76
35 schema:datePublished 2018-01
36 schema:datePublishedReg 2018-01-01
37 schema:description Flame detection is a specialized task in fire detection and forest fire monitoring systems. In this paper, a static and dynamic texture analysis of flame in forest fire detection is proposed. The flames are initially segmented, based on the color in YCbCr (luminance, chrominance blue and chrominance red components) color space called candidate flame region. From the candidate flame region, the static and dynamic texture features are extracted. Static texture features are obtained by hybrid texture descriptors. Dynamic texture features are derived using 2D wavelet decomposition in temporal domain and 3D volumetric wavelet decomposition. Finally, extreme learning machine classifier is used to classify the candidate flame region as real flame or non-flame, based on the extracted texture features. The proposed flame detection system is applied to various fire detection scenes, in the real environments and it effectively distinguishes fire from fire-colored moving objects. The results show that the proposed fire detection technique achieves the average detection rate of 95.65% which is better compared to other state-of-art methods.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N9ed787d869c64c3ba013daf3ca7e0d40
42 Nb1d87a4b77bf40d6872cd7255c2b6fde
43 sg:journal.1122008
44 schema:name Efficient Flame Detection Based on Static and Dynamic Texture Analysis in Forest Fire Detection
45 schema:pagination 255-288
46 schema:productId N5f5eaf75dff641e9910248eb4dd8ff01
47 N60d6ebf5e4b44cabadabe699a6b2bf7c
48 Naea5e15f6cf94f568dbf9478f450e77a
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092747097
50 https://doi.org/10.1007/s10694-017-0683-x
51 schema:sdDatePublished 2019-04-10T21:53
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N8b08fbad7689413a99a40b816661ce3a
54 schema:url http://link.springer.com/10.1007/s10694-017-0683-x
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N5f5eaf75dff641e9910248eb4dd8ff01 schema:name readcube_id
59 schema:value 675d663026faa8c1035d1c50312375dbf4b2df856eeac211edd5a9e1f6c2b567
60 rdf:type schema:PropertyValue
61 N60d6ebf5e4b44cabadabe699a6b2bf7c schema:name dimensions_id
62 schema:value pub.1092747097
63 rdf:type schema:PropertyValue
64 N7b30b8ab901444048eb2b0066e518d63 schema:name Department of Electronics and Communication Engineering, Lourdes Mount College of Engineering and Technology, 629 195, Marthandam, Tamil Nadu, India
65 rdf:type schema:Organization
66 N81022bed39664e4d98b1d0a0b3bfea4e rdf:first sg:person.07714342053.48
67 rdf:rest Nad5b6304a72749ed9d42ca1a489ce9f6
68 N8b08fbad7689413a99a40b816661ce3a schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N912c8dc7c3a4443d8fe2e8d4057bca06 schema:name Department of Electronics and Communication Engineering, Bethlahem Institute of Engineering, 629157, Karungal, Tamil Nadu, India
71 rdf:type schema:Organization
72 N9ed787d869c64c3ba013daf3ca7e0d40 schema:volumeNumber 54
73 rdf:type schema:PublicationVolume
74 Nad5b6304a72749ed9d42ca1a489ce9f6 rdf:first sg:person.015647132651.45
75 rdf:rest rdf:nil
76 Naea5e15f6cf94f568dbf9478f450e77a schema:name doi
77 schema:value 10.1007/s10694-017-0683-x
78 rdf:type schema:PropertyValue
79 Nb1d87a4b77bf40d6872cd7255c2b6fde schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 Ne3509c05fe1e464e92b39063e91a0c74 rdf:first sg:person.011334403051.02
82 rdf:rest N81022bed39664e4d98b1d0a0b3bfea4e
83 Nfe9558589bf84419a9630c8a74ae9d8d schema:name Department of Mechanical Engineering, University College of Engineering, 629 004, Nagercoil, Tamilnadu, India
84 rdf:type schema:Organization
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:journal.1122008 schema:issn 0015-2684
92 1572-8099
93 schema:name Fire Technology
94 rdf:type schema:Periodical
95 sg:person.011334403051.02 schema:affiliation N912c8dc7c3a4443d8fe2e8d4057bca06
96 schema:familyName Emmy Prema
97 schema:givenName C.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334403051.02
99 rdf:type schema:Person
100 sg:person.015647132651.45 schema:affiliation Nfe9558589bf84419a9630c8a74ae9d8d
101 schema:familyName Suresh
102 schema:givenName S.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647132651.45
104 rdf:type schema:Person
105 sg:person.07714342053.48 schema:affiliation N7b30b8ab901444048eb2b0066e518d63
106 schema:familyName Vinsley
107 schema:givenName S. S.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714342053.48
109 rdf:type schema:Person
110 sg:pub.10.1007/s00138-011-0369-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042641374
111 https://doi.org/10.1007/s00138-011-0369-1
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10694-016-0580-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014587934
114 https://doi.org/10.1007/s10694-016-0580-8
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11760-010-0163-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039034194
117 https://doi.org/10.1007/s11760-010-0163-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1021669406132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008692516
120 https://doi.org/10.1023/a:1021669406132
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.asoc.2015.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042237435
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.asoc.2015.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027505371
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.buildenv.2009.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013419526
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.compeleceng.2011.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028629933
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.engappai.2012.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026359332
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.eswa.2016.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023423844
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.firesaf.2006.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043898027
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.firesaf.2008.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003839334
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.firesaf.2010.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028060171
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.firesaf.2014.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035040705
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ins.2013.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028370585
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jvcir.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027605614
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neucom.2012.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047445430
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neucom.2015.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143961
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.patcog.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049326644
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.patrec.2005.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008014656
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.patrec.2006.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021178562
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.proeng.2012.08.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036557372
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.proeng.2013.08.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050821724
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0167-8655(02)00390-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041018891
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/18.661502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100600
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/icip.2012.6467333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095752810
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tcsvt.2011.2177182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061575879
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tcsvt.2014.2339592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576350
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
171 rdf:type schema:CreativeWork
172 https://doi.org/10.14569/ijarai.2014.030203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067340591
173 rdf:type schema:CreativeWork
174 https://doi.org/10.4156/jcit.vol7.issue21.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072282372
175 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...