Deep Belief Network For Smoke Detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Arun Singh Pundir, Balasubramanian Raman

ABSTRACT

Forest fire is an serious hazard in many places around the world. For such threats, video-based smoke detection would be particularly important for early warning because smoke arises in any forest fire and can be seen from a long distance. This paper presents a novel and robust approach for smoke detection that employs Deep Belief Networks. The proposed method is divided into three phases. In the preprocessing phase, the region of high motion is extracted by background subtraction method. During the next phase, smoke pixel intensities are extracted from the Red, Green and Blue and Luminance; Chroma:Blue; Chroma:Red color spaces for foreground regions. Subsequently, second feature which is based on texture is computed for detecting smoke regions in which Local Extrema Co-occurrence Pattern, an improved version of local binary patterns are extracted from different foreground regions which compute not only texture of smoke but also intensity and color of smoke using Hue Saturation Value color space. Finally, Deep Belief Network is employed for classification. The proposed method proves its accuracy and robustness when tested on different varieties of scenarios whether wildfire-smoke video, hill base smoke video, indoor or outdoor smoke videos. More... »

PAGES

1943-1960

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10694-017-0665-z

DOI

http://dx.doi.org/10.1007/s10694-017-0665-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086351650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and Engineering, IIT, Roorkee, Roorkee, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pundir", 
        "givenName": "Arun Singh", 
        "id": "sg:person.013411575037.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411575037.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and Engineering, IIT, Roorkee, Roorkee, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raman", 
        "givenName": "Balasubramanian", 
        "id": "sg:person.016522067653.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522067653.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1127647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004607132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021669406132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008692516", 
          "https://doi.org/10.1023/a:1021669406132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2009.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013419526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-009-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015504964", 
          "https://doi.org/10.1007/s10694-009-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10694-009-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015504964", 
          "https://doi.org/10.1007/s10694-009-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-32390-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015628755", 
          "https://doi.org/10.1007/3-540-32390-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-32390-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015628755", 
          "https://doi.org/10.1007/3-540-32390-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-014-0738-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016133140", 
          "https://doi.org/10.1007/s11760-014-0738-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(01)00135-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017847056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72823-8_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026106888", 
          "https://doi.org/10.1007/978-3-540-72823-8_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72823-8_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026106888", 
          "https://doi.org/10.1007/978-3-540-72823-8_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027605614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2011.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032707727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.firesaf.2015.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035837434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79547-6_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039015483", 
          "https://doi.org/10.1007/978-3-540-79547-6_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79547-6_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039015483", 
          "https://doi.org/10.1007/978-3-540-79547-6_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-008-0184-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039602046", 
          "https://doi.org/10.1007/s11263-008-0184-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-011-0325-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042795614", 
          "https://doi.org/10.1007/s00138-011-0325-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1290-0729(02)01397-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046865466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1290-0729(02)01397-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046865466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2000.903017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093886014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2008.4712020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094880591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisp.2008.397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095193893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisw.2007.4425500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095672374"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "Forest fire is an serious hazard in many places around the world. For such threats, video-based smoke detection would be particularly important for early warning because smoke arises in any forest fire and can be seen from a long distance. This paper presents a novel and robust approach for smoke detection that employs Deep Belief Networks. The proposed method is divided into three phases. In the preprocessing phase, the region of high motion is extracted by background subtraction method. During the next phase, smoke pixel intensities are extracted from the Red, Green and Blue and Luminance; Chroma:Blue; Chroma:Red color spaces for foreground regions. Subsequently, second feature which is based on texture is computed for detecting smoke regions in which Local Extrema Co-occurrence Pattern, an improved version of local binary patterns are extracted from different foreground regions which compute not only texture of smoke but also intensity and color of smoke using Hue Saturation Value color space. Finally, Deep Belief Network is employed for classification. The proposed method proves its accuracy and robustness when tested on different varieties of scenarios whether wildfire-smoke video, hill base smoke video, indoor or outdoor smoke videos.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10694-017-0665-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1122008", 
        "issn": [
          "0015-2684", 
          "1572-8099"
        ], 
        "name": "Fire Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Deep Belief Network For Smoke Detection", 
    "pagination": "1943-1960", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfa8ff793c66522fc9de03c6c0d9c3ba859a12b8e595b6d4f268679f5d02e620"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10694-017-0665-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086351650"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10694-017-0665-z", 
      "https://app.dimensions.ai/details/publication/pub.1086351650"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10694-017-0665-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0665-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0665-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0665-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10694-017-0665-z'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10694-017-0665-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2963b55caf9b4350a78df8257d81075a
4 schema:citation sg:pub.10.1007/3-540-32390-2_2
5 sg:pub.10.1007/978-3-540-72823-8_73
6 sg:pub.10.1007/978-3-540-79547-6_12
7 sg:pub.10.1007/s00138-011-0325-0
8 sg:pub.10.1007/s10694-009-0106-8
9 sg:pub.10.1007/s11263-008-0184-y
10 sg:pub.10.1007/s11760-014-0738-0
11 sg:pub.10.1023/a:1021669406132
12 https://doi.org/10.1016/j.buildenv.2009.10.017
13 https://doi.org/10.1016/j.firesaf.2011.01.001
14 https://doi.org/10.1016/j.firesaf.2015.03.001
15 https://doi.org/10.1016/j.jvcir.2006.12.003
16 https://doi.org/10.1016/j.neucom.2015.03.015
17 https://doi.org/10.1016/s0167-8655(01)00135-0
18 https://doi.org/10.1016/s1290-0729(02)01397-2
19 https://doi.org/10.1109/cisp.2008.397
20 https://doi.org/10.1109/cisw.2007.4425500
21 https://doi.org/10.1109/icip.2008.4712020
22 https://doi.org/10.1109/icpr.2000.903017
23 https://doi.org/10.1126/science.1127647
24 https://doi.org/10.1162/neco.2006.18.7.1527
25 schema:datePublished 2017-11
26 schema:datePublishedReg 2017-11-01
27 schema:description Forest fire is an serious hazard in many places around the world. For such threats, video-based smoke detection would be particularly important for early warning because smoke arises in any forest fire and can be seen from a long distance. This paper presents a novel and robust approach for smoke detection that employs Deep Belief Networks. The proposed method is divided into three phases. In the preprocessing phase, the region of high motion is extracted by background subtraction method. During the next phase, smoke pixel intensities are extracted from the Red, Green and Blue and Luminance; Chroma:Blue; Chroma:Red color spaces for foreground regions. Subsequently, second feature which is based on texture is computed for detecting smoke regions in which Local Extrema Co-occurrence Pattern, an improved version of local binary patterns are extracted from different foreground regions which compute not only texture of smoke but also intensity and color of smoke using Hue Saturation Value color space. Finally, Deep Belief Network is employed for classification. The proposed method proves its accuracy and robustness when tested on different varieties of scenarios whether wildfire-smoke video, hill base smoke video, indoor or outdoor smoke videos.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Ndf890c6fa13e498d8c85b831a1925323
32 Nf6c630e94a6047db8810c8f20323852e
33 sg:journal.1122008
34 schema:name Deep Belief Network For Smoke Detection
35 schema:pagination 1943-1960
36 schema:productId N6446c776b97a4ad6bd60463873d4d560
37 Nc67263a1133d43fcb674b73b693ff99b
38 Ne38346cb98c44bbaaeb8732c1f363d74
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086351650
40 https://doi.org/10.1007/s10694-017-0665-z
41 schema:sdDatePublished 2019-04-11T10:28
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N6283f84c482f4b2f826d4a5b2a4bf12f
44 schema:url https://link.springer.com/10.1007%2Fs10694-017-0665-z
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N2963b55caf9b4350a78df8257d81075a rdf:first sg:person.013411575037.17
49 rdf:rest Nb8760ffca4504721a16cb7960950503f
50 N56abf82b8847430c834c3085b61d71e7 schema:name Department of Computer Science and Engineering, IIT, Roorkee, Roorkee, India
51 rdf:type schema:Organization
52 N6283f84c482f4b2f826d4a5b2a4bf12f schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N6446c776b97a4ad6bd60463873d4d560 schema:name readcube_id
55 schema:value cfa8ff793c66522fc9de03c6c0d9c3ba859a12b8e595b6d4f268679f5d02e620
56 rdf:type schema:PropertyValue
57 N6ed67b17dd764687a07d4f8c1549cf20 schema:name Department of Computer Science and Engineering, IIT, Roorkee, Roorkee, India
58 rdf:type schema:Organization
59 Nb8760ffca4504721a16cb7960950503f rdf:first sg:person.016522067653.35
60 rdf:rest rdf:nil
61 Nc67263a1133d43fcb674b73b693ff99b schema:name doi
62 schema:value 10.1007/s10694-017-0665-z
63 rdf:type schema:PropertyValue
64 Ndf890c6fa13e498d8c85b831a1925323 schema:volumeNumber 53
65 rdf:type schema:PublicationVolume
66 Ne38346cb98c44bbaaeb8732c1f363d74 schema:name dimensions_id
67 schema:value pub.1086351650
68 rdf:type schema:PropertyValue
69 Nf6c630e94a6047db8810c8f20323852e schema:issueNumber 6
70 rdf:type schema:PublicationIssue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1122008 schema:issn 0015-2684
78 1572-8099
79 schema:name Fire Technology
80 rdf:type schema:Periodical
81 sg:person.013411575037.17 schema:affiliation N56abf82b8847430c834c3085b61d71e7
82 schema:familyName Pundir
83 schema:givenName Arun Singh
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411575037.17
85 rdf:type schema:Person
86 sg:person.016522067653.35 schema:affiliation N6ed67b17dd764687a07d4f8c1549cf20
87 schema:familyName Raman
88 schema:givenName Balasubramanian
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522067653.35
90 rdf:type schema:Person
91 sg:pub.10.1007/3-540-32390-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015628755
92 https://doi.org/10.1007/3-540-32390-2_2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-540-72823-8_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026106888
95 https://doi.org/10.1007/978-3-540-72823-8_73
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-540-79547-6_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039015483
98 https://doi.org/10.1007/978-3-540-79547-6_12
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00138-011-0325-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042795614
101 https://doi.org/10.1007/s00138-011-0325-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10694-009-0106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015504964
104 https://doi.org/10.1007/s10694-009-0106-8
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11263-008-0184-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039602046
107 https://doi.org/10.1007/s11263-008-0184-y
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11760-014-0738-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016133140
110 https://doi.org/10.1007/s11760-014-0738-0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1023/a:1021669406132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008692516
113 https://doi.org/10.1023/a:1021669406132
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.buildenv.2009.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013419526
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.firesaf.2011.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032707727
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.firesaf.2015.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035837434
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jvcir.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027605614
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.neucom.2015.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305792
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0167-8655(01)00135-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017847056
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s1290-0729(02)01397-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046865466
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/cisp.2008.397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095193893
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/cisw.2007.4425500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095672374
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/icip.2008.4712020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094880591
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/icpr.2000.903017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093886014
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1127647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004607132
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
140 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...