Ontology type: schema:ScholarlyArticle Open Access: True
2018-03
AUTHORSCharles Tillier, Olivier Wintenberger
ABSTRACTWhen assessing risks on a finite-time horizon, the problem can often be reduced to the study of a random sequence C(N) = (C1,…,CN) of random length N, where C(N) comes from the product of a matrix A(N) of random size N × N and a random sequence X(N) of random length N. Our aim is to build a regular variation framework for such random sequences of random length, to study their spectral properties and, subsequently, to develop risk measures. In several applications, many risk indicators can be expressed from the extremal behavior of ∥C(N)∥, for some norm ∥⋅∥. We propose a generalization of Breiman’s Lemma that gives way to a tail estimate of ∥C(N)∥ and provides risk indicators such as the ruin probability and the tail index for Shot Noise Processes on a finite-time horizon. Lastly, we apply our main result to a model used in dietary risk assessment and in non-life insurance mathematics to illustrate the applicability of our method. More... »
PAGES27-56
http://scigraph.springernature.com/pub.10.1007/s10687-017-0297-1
DOIhttp://dx.doi.org/10.1007/s10687-017-0297-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1090804366
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e",
"id": "https://www.grid.ac/institutes/grid.463964.a",
"name": [
"Universit\u00e9 Paris Nanterre, 200 avenue de la r\u00e9publique, 92000, Nanterre, France",
"Universit\u00e9 Pierre et Marie Curie, LSTA, 4 place Jussieu, 75005, Paris, France"
],
"type": "Organization"
},
"familyName": "Tillier",
"givenName": "Charles",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Copenhagen",
"id": "https://www.grid.ac/institutes/grid.5254.6",
"name": [
"Universit\u00e9 Pierre et Marie Curie, LSTA, 4 place Jussieu, 75005, Paris, France",
"Department of Mathematical Sciences, UCPH, Universitetsparken 5, 2100, Copenhague, Danemark"
],
"type": "Organization"
},
"familyName": "Wintenberger",
"givenName": "Olivier",
"id": "sg:person.013144244757.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144244757.26"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.2298/pim0694121h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005482610"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-9058-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009744271",
"https://doi.org/10.1007/978-1-4613-9058-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-9058-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009744271",
"https://doi.org/10.1007/978-1-4613-9058-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0304-4149(94)90113-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009783717"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.spa.2008.05.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009825890"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1012537231",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1012537231",
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3390/risks2010003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012694648"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11009-011-9274-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030348678",
"https://doi.org/10.1007/s11009-011-9274-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/17513750903222960",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031465727"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1025148622954",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038462494",
"https://doi.org/10.1023/a:1025148622954"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0304-4149(01)00156-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044557109"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.spl.2014.01.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047175045"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2298/pim0694171j",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050789571"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-02303-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051840937",
"https://doi.org/10.1007/978-3-319-02303-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-02303-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051840937",
"https://doi.org/10.1007/978-3-319-02303-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0331041",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062844447"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/14-ps231",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064394817"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aoap/1031863174",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064397658"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aoap/1177005071",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064397974"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aop/1176991767",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064404212"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1239/aap/1354716592",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064441085"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1239/jap/1082552199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064441848"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2143/ast.36.2.2017926",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069075450"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3150/15-bej699",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071057104"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/mbe.2008.5.35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071741471"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511721434",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098702033"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/7431",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098867659"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/9780470316962",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109489376"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1109489376",
"type": "CreativeWork"
}
],
"datePublished": "2018-03",
"datePublishedReg": "2018-03-01",
"description": "When assessing risks on a finite-time horizon, the problem can often be reduced to the study of a random sequence C(N) = (C1,\u2026,CN) of random length N, where C(N) comes from the product of a matrix A(N) of random size N \u00d7 N and a random sequence X(N) of random length N. Our aim is to build a regular variation framework for such random sequences of random length, to study their spectral properties and, subsequently, to develop risk measures. In several applications, many risk indicators can be expressed from the extremal behavior of \u2225C(N)\u2225, for some norm \u2225\u22c5\u2225. We propose a generalization of Breiman\u2019s Lemma that gives way to a tail estimate of \u2225C(N)\u2225 and provides risk indicators such as the ruin probability and the tail index for Shot Noise Processes on a finite-time horizon. Lastly, we apply our main result to a model used in dietary risk assessment and in non-life insurance mathematics to illustrate the applicability of our method.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10687-017-0297-1",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1047855",
"issn": [
"1386-1999",
"1572-915X"
],
"name": "Extremes",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "21"
}
],
"name": "Regular variation of a random length sequence of random variables and application to risk assessment",
"pagination": "27-56",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"e7c729951b93033f3c01bef06193d764459550fab8a7f0efbabaa68a9f184fcd"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10687-017-0297-1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1090804366"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10687-017-0297-1",
"https://app.dimensions.ai/details/publication/pub.1090804366"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000004.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10687-017-0297-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10687-017-0297-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10687-017-0297-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10687-017-0297-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10687-017-0297-1'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
21 PREDICATES
54 URIs
19 LITERALS
7 BLANK NODES