Light tails: all summands are large when the empirical mean is large View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

Michel Broniatowski, Zhansheng Cao

ABSTRACT

It is well known that for a fixed number of independent identically distributed summands with light tail, large values of the sample mean are obtained only when all the summands take large values. This paper explores this property as the number of summands tends to infinity. It provides the order of magnitude of the sample mean for which all summands are in some interval containing this value and it also explores the width of this interval with respect to the distribution of the summands in their upper tail. These results are proved for summands with log-concave or nearly log concave densities. Making use of some extension of the Erdös-Rényi law of large numbers it also explores the forming of aggregates in a sequence of i.i.d. random variables. As a by product the connection is established between large exceedances of the local slope of a random walk on growing bins and the theory of extreme order statistics. More... »

PAGES

305-336

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10687-014-0187-8

DOI

http://dx.doi.org/10.1007/s10687-014-0187-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017178144


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "LSTA, Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broniatowski", 
        "givenName": "Michel", 
        "id": "sg:person.014502762241.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014502762241.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "LSTA, Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Zhansheng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-04174-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000686094", 
          "https://doi.org/10.1007/978-3-662-04174-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04174-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000686094", 
          "https://doi.org/10.1007/978-3-662-04174-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007444889", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-34471-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007444889", 
          "https://doi.org/10.1007/0-387-34471-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-34471-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007444889", 
          "https://doi.org/10.1007/0-387-34471-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00534992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016514633", 
          "https://doi.org/10.1007/bf00534992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12442-1_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040112752", 
          "https://doi.org/10.1007/978-3-319-12442-1_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-66.3.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043447501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2004.06.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045517788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01048727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048289142", 
          "https://doi.org/10.1007/bf01048727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049462896", 
          "https://doi.org/10.1007/bf01303799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049462896", 
          "https://doi.org/10.1007/bf01303799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/aima.1995.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052771803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176991507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176993227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511721434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098702033"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06", 
    "datePublishedReg": "2014-06-01", 
    "description": "It is well known that for a fixed number of independent identically distributed summands with light tail, large values of the sample mean are obtained only when all the summands take large values. This paper explores this property as the number of summands tends to infinity. It provides the order of magnitude of the sample mean for which all summands are in some interval containing this value and it also explores the width of this interval with respect to the distribution of the summands in their upper tail. These results are proved for summands with log-concave or nearly log concave densities. Making use of some extension of the Erd\u00f6s-R\u00e9nyi law of large numbers it also explores the forming of aggregates in a sequence of i.i.d. random variables. As a by product the connection is established between large exceedances of the local slope of a random walk on growing bins and the theory of extreme order statistics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10687-014-0187-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047855", 
        "issn": [
          "1386-1999", 
          "1572-915X"
        ], 
        "name": "Extremes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Light tails: all summands are large when the empirical mean is large", 
    "pagination": "305-336", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51d7f37a6b7fd686e4e584dd8a7efe3e148a1ad3af14639d13f99cabed7651aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10687-014-0187-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017178144"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10687-014-0187-8", 
      "https://app.dimensions.ai/details/publication/pub.1017178144"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10687-014-0187-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10687-014-0187-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10687-014-0187-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10687-014-0187-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10687-014-0187-8'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10687-014-0187-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1b438da4297d4a3eb9d99b4196db85b6
4 schema:citation sg:pub.10.1007/0-387-34471-3
5 sg:pub.10.1007/978-3-319-12442-1_5
6 sg:pub.10.1007/978-3-662-04174-1
7 sg:pub.10.1007/bf00534992
8 sg:pub.10.1007/bf01048727
9 sg:pub.10.1007/bf01303799
10 https://app.dimensions.ai/details/publication/pub.1007444889
11 https://doi.org/10.1006/aima.1995.1062
12 https://doi.org/10.1016/j.spl.2004.06.042
13 https://doi.org/10.1017/cbo9780511721434
14 https://doi.org/10.1112/plms/s3-66.3.568
15 https://doi.org/10.1214/aop/1176991507
16 https://doi.org/10.1214/aop/1176993227
17 schema:datePublished 2014-06
18 schema:datePublishedReg 2014-06-01
19 schema:description It is well known that for a fixed number of independent identically distributed summands with light tail, large values of the sample mean are obtained only when all the summands take large values. This paper explores this property as the number of summands tends to infinity. It provides the order of magnitude of the sample mean for which all summands are in some interval containing this value and it also explores the width of this interval with respect to the distribution of the summands in their upper tail. These results are proved for summands with log-concave or nearly log concave densities. Making use of some extension of the Erdös-Rényi law of large numbers it also explores the forming of aggregates in a sequence of i.i.d. random variables. As a by product the connection is established between large exceedances of the local slope of a random walk on growing bins and the theory of extreme order statistics.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N5c4aad860b3647a786d28c61af34c8e6
24 Nbaf1aa662aa44268be58bb7a0be258b5
25 sg:journal.1047855
26 schema:name Light tails: all summands are large when the empirical mean is large
27 schema:pagination 305-336
28 schema:productId N7bb423fcc2704a00a7c415d29c950feb
29 Nb9a1f574be2a456b81be06da17342b51
30 Ned99da31fb31471faca8b6871aea873e
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017178144
32 https://doi.org/10.1007/s10687-014-0187-8
33 schema:sdDatePublished 2019-04-11T01:53
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nedb34c3a69e84d098d208dd22e1efaf8
36 schema:url http://link.springer.com/10.1007/s10687-014-0187-8
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1b438da4297d4a3eb9d99b4196db85b6 rdf:first sg:person.014502762241.99
41 rdf:rest Nc8a45e5c25ae4c5988ad8aa07c96ca44
42 N337d0a6fc0984c8d967c59925c4676f1 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
43 schema:familyName Cao
44 schema:givenName Zhansheng
45 rdf:type schema:Person
46 N5c4aad860b3647a786d28c61af34c8e6 schema:volumeNumber 17
47 rdf:type schema:PublicationVolume
48 N7bb423fcc2704a00a7c415d29c950feb schema:name readcube_id
49 schema:value 51d7f37a6b7fd686e4e584dd8a7efe3e148a1ad3af14639d13f99cabed7651aa
50 rdf:type schema:PropertyValue
51 Nb9a1f574be2a456b81be06da17342b51 schema:name doi
52 schema:value 10.1007/s10687-014-0187-8
53 rdf:type schema:PropertyValue
54 Nbaf1aa662aa44268be58bb7a0be258b5 schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 Nc8a45e5c25ae4c5988ad8aa07c96ca44 rdf:first N337d0a6fc0984c8d967c59925c4676f1
57 rdf:rest rdf:nil
58 Ned99da31fb31471faca8b6871aea873e schema:name dimensions_id
59 schema:value pub.1017178144
60 rdf:type schema:PropertyValue
61 Nedb34c3a69e84d098d208dd22e1efaf8 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
67 schema:name Statistics
68 rdf:type schema:DefinedTerm
69 sg:journal.1047855 schema:issn 1386-1999
70 1572-915X
71 schema:name Extremes
72 rdf:type schema:Periodical
73 sg:person.014502762241.99 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
74 schema:familyName Broniatowski
75 schema:givenName Michel
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014502762241.99
77 rdf:type schema:Person
78 sg:pub.10.1007/0-387-34471-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007444889
79 https://doi.org/10.1007/0-387-34471-3
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/978-3-319-12442-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040112752
82 https://doi.org/10.1007/978-3-319-12442-1_5
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-3-662-04174-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000686094
85 https://doi.org/10.1007/978-3-662-04174-1
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf00534992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016514633
88 https://doi.org/10.1007/bf00534992
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01048727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048289142
91 https://doi.org/10.1007/bf01048727
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01303799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049462896
94 https://doi.org/10.1007/bf01303799
95 rdf:type schema:CreativeWork
96 https://app.dimensions.ai/details/publication/pub.1007444889 schema:CreativeWork
97 https://doi.org/10.1006/aima.1995.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052771803
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.spl.2004.06.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045517788
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1017/cbo9780511721434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098702033
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1112/plms/s3-66.3.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043447501
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1214/aop/1176991507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404142
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1214/aop/1176993227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404597
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.463964.a schema:alternateName Laboratoire de Statistique Théorique et Appliquée
110 schema:name LSTA, Université Pierre et Marie Curie, Paris, France
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...