Dynamically evolving Gaussian spatial fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08-18

AUTHORS

Anastassia Baxevani, Krzysztof Podgórski, Igor Rychlik

ABSTRACT

We discuss general non-stationary spatio-temporal surfaces that involve dynamics governed by velocity fields. The approach formalizes and expands previously used models in analysis of satellite data of significant wave heights. We start with homogeneous spatial fields. By applying an extension of the standard moving average construction we obtain models which are stationary in time. The resulting surface changes with time but is dynamically inactive since its velocities, when sampled across the field, have distributions centered at zero. We introduce a dynamical evolution to such a field by composing it with a dynamical flow governed by a given velocity field. This leads to non-stationary models. The models are extensions of the earlier discretized autoregressive models which account for a local velocity of traveling surface. We demonstrate that for such a surface its dynamics is a combination of dynamics introduced by the flow and the dynamics resulting from the covariance structure of the underlying stochastic field. We extend this approach to fields that are only locally stationary and have their parameters varying over a larger spatio-temporal horizon. More... »

PAGES

223-251

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10687-010-0120-8

DOI

http://dx.doi.org/10.1007/s10687-010-0120-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023774934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 41296, Gothenburg, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.8761.8", 
          "name": [
            "Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 41296, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baxevani", 
        "givenName": "Anastassia", 
        "id": "sg:person.011216570143.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216570143.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Box 118, 22100, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Box 118, 22100, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Podg\u00f3rski", 
        "givenName": "Krzysztof", 
        "id": "sg:person.015773141315.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773141315.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 41296, Gothenburg, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.8761.8", 
          "name": [
            "Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 41296, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychlik", 
        "givenName": "Igor", 
        "id": "sg:person.015546022606.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-0173-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001840015", 
          "https://doi.org/10.1007/978-1-4612-0173-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10687-006-0002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007005642", 
          "https://doi.org/10.1007/s10687-006-0002-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08-18", 
    "datePublishedReg": "2010-08-18", 
    "description": "We discuss general non-stationary spatio-temporal surfaces that involve dynamics governed by velocity fields. The approach formalizes and expands previously used models in analysis of satellite data of significant wave heights. We start with homogeneous spatial fields. By applying an extension of the standard moving average construction we obtain models which are stationary in time. The resulting surface changes with time but is dynamically inactive since its velocities, when sampled across the field, have distributions centered at zero. We introduce a dynamical evolution to such a field by composing it with a dynamical flow governed by a given velocity field. This leads to non-stationary models. The models are extensions of the earlier discretized autoregressive models which account for a local velocity of traveling surface. We demonstrate that for such a surface its dynamics is a combination of dynamics introduced by the flow and the dynamics resulting from the covariance structure of the underlying stochastic field. We extend this approach to fields that are only locally stationary and have their parameters varying over a larger spatio-temporal horizon.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10687-010-0120-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047855", 
        "issn": [
          "1386-1999", 
          "1572-915X"
        ], 
        "name": "Extremes", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "velocity field", 
      "spatial field", 
      "Gaussian spatial field", 
      "non-stationary model", 
      "dynamical flow", 
      "stochastic fields", 
      "dynamical evolution", 
      "spatio-temporal surface", 
      "covariance structure", 
      "autoregressive model", 
      "local velocity", 
      "significant wave height", 
      "combination of dynamics", 
      "dynamics", 
      "wave height", 
      "field", 
      "average construction", 
      "velocity", 
      "model", 
      "extension", 
      "flow", 
      "satellite data", 
      "surface", 
      "surface changes", 
      "approach", 
      "parameters", 
      "horizon", 
      "distribution", 
      "construction", 
      "evolution", 
      "structure", 
      "time", 
      "height", 
      "analysis", 
      "data", 
      "combination", 
      "changes"
    ], 
    "name": "Dynamically evolving Gaussian spatial fields", 
    "pagination": "223-251", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023774934"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10687-010-0120-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10687-010-0120-8", 
      "https://app.dimensions.ai/details/publication/pub.1023774934"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10687-010-0120-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0120-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0120-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0120-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0120-8'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      64 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10687-010-0120-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9a2433e86ca2438cbac2ea34b3d635b5
4 schema:citation sg:pub.10.1007/978-1-4612-0173-1
5 sg:pub.10.1007/s10687-006-0002-2
6 schema:datePublished 2010-08-18
7 schema:datePublishedReg 2010-08-18
8 schema:description We discuss general non-stationary spatio-temporal surfaces that involve dynamics governed by velocity fields. The approach formalizes and expands previously used models in analysis of satellite data of significant wave heights. We start with homogeneous spatial fields. By applying an extension of the standard moving average construction we obtain models which are stationary in time. The resulting surface changes with time but is dynamically inactive since its velocities, when sampled across the field, have distributions centered at zero. We introduce a dynamical evolution to such a field by composing it with a dynamical flow governed by a given velocity field. This leads to non-stationary models. The models are extensions of the earlier discretized autoregressive models which account for a local velocity of traveling surface. We demonstrate that for such a surface its dynamics is a combination of dynamics introduced by the flow and the dynamics resulting from the covariance structure of the underlying stochastic field. We extend this approach to fields that are only locally stationary and have their parameters varying over a larger spatio-temporal horizon.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N69cd086fc93b49668510ef4e181a0ba9
13 Na6de1d0343a14700b9855649a093a2ca
14 sg:journal.1047855
15 schema:keywords Gaussian spatial field
16 analysis
17 approach
18 autoregressive model
19 average construction
20 changes
21 combination
22 combination of dynamics
23 construction
24 covariance structure
25 data
26 distribution
27 dynamical evolution
28 dynamical flow
29 dynamics
30 evolution
31 extension
32 field
33 flow
34 height
35 horizon
36 local velocity
37 model
38 non-stationary model
39 parameters
40 satellite data
41 significant wave height
42 spatial field
43 spatio-temporal surface
44 stochastic fields
45 structure
46 surface
47 surface changes
48 time
49 velocity
50 velocity field
51 wave height
52 schema:name Dynamically evolving Gaussian spatial fields
53 schema:pagination 223-251
54 schema:productId N3eb7095c5f0d4125a216e18a72649c93
55 Ncd2896d5336c45fa98672c92c7bdb569
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023774934
57 https://doi.org/10.1007/s10687-010-0120-8
58 schema:sdDatePublished 2022-06-01T22:09
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Neb60dc52a2b8439493023938e91cbe7f
61 schema:url https://doi.org/10.1007/s10687-010-0120-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N3eb7095c5f0d4125a216e18a72649c93 schema:name doi
66 schema:value 10.1007/s10687-010-0120-8
67 rdf:type schema:PropertyValue
68 N69cd086fc93b49668510ef4e181a0ba9 schema:volumeNumber 14
69 rdf:type schema:PublicationVolume
70 N84d0e2096b544fc5ba0ce789d737a4cb rdf:first sg:person.015546022606.95
71 rdf:rest rdf:nil
72 N96add531f5d4497b85a178bbf30e984d rdf:first sg:person.015773141315.16
73 rdf:rest N84d0e2096b544fc5ba0ce789d737a4cb
74 N9a2433e86ca2438cbac2ea34b3d635b5 rdf:first sg:person.011216570143.68
75 rdf:rest N96add531f5d4497b85a178bbf30e984d
76 Na6de1d0343a14700b9855649a093a2ca schema:issueNumber 2
77 rdf:type schema:PublicationIssue
78 Ncd2896d5336c45fa98672c92c7bdb569 schema:name dimensions_id
79 schema:value pub.1023774934
80 rdf:type schema:PropertyValue
81 Neb60dc52a2b8439493023938e91cbe7f schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1047855 schema:issn 1386-1999
90 1572-915X
91 schema:name Extremes
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.011216570143.68 schema:affiliation grid-institutes:grid.8761.8
95 schema:familyName Baxevani
96 schema:givenName Anastassia
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216570143.68
98 rdf:type schema:Person
99 sg:person.015546022606.95 schema:affiliation grid-institutes:grid.8761.8
100 schema:familyName Rychlik
101 schema:givenName Igor
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95
103 rdf:type schema:Person
104 sg:person.015773141315.16 schema:affiliation grid-institutes:grid.4514.4
105 schema:familyName Podgórski
106 schema:givenName Krzysztof
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773141315.16
108 rdf:type schema:Person
109 sg:pub.10.1007/978-1-4612-0173-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001840015
110 https://doi.org/10.1007/978-1-4612-0173-1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10687-006-0002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007005642
113 https://doi.org/10.1007/s10687-006-0002-2
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.4514.4 schema:alternateName Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Box 118, 22100, Lund, Sweden
116 schema:name Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Box 118, 22100, Lund, Sweden
117 rdf:type schema:Organization
118 grid-institutes:grid.8761.8 schema:alternateName Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 41296, Gothenburg, Sweden
119 schema:name Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 41296, Gothenburg, Sweden
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...