Ontology type: schema:ScholarlyArticle
2010-01-23
AUTHORSDouglas Maraun, Henning W. Rust, Timothy J. Osborn
ABSTRACTWe develop a vector generalised linear model to describe the influence of the atmospheric circulation on extreme daily precipitation across the UK. The atmospheric circulation is represented by three covariates, namely synoptic scale airflow strength, direction and vorticity; the extremes are represented by the monthly maxima of daily precipitation, modelled by the generalised extreme value distribution (GEV). The model parameters for data from 689 rain gauges across the UK are estimated using a maximum likelihood estimator. Within the framework of vector generalised linear models, various plausible models exist to describe the influence of the individual covariates, possible nonlinearities in the covariates and seasonality. We selected the final model based on the Akaike information criterion (AIC), and evaluated the predictive power of individual covariates by means of quantile verification scores and leave-one-out cross validation. The final model conditions the location and scale parameter of the GEV on all three covariates; the shape parameter is modelled as a constant. The relationships between strength and vorticity on the one hand, and the GEV location and scale parameters on the other hand are modelled as natural cubic splines with two degrees of freedom. The influence of direction is parameterised as a sine with amplitude and phase. The final model has a common parameterisation for the whole year. Seasonality is partly captured by the covariates themselves, but mostly by an additional annual cycle that is parameterised as a phase-shifted sine and accounts for physical influences that we have not attempted to explicitly model, such as humidity. More... »
PAGES133-153
http://scigraph.springernature.com/pub.10.1007/s10687-010-0102-x
DOIhttp://dx.doi.org/10.1007/s10687-010-0102-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028663432
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Giessen, Giessen, Germany",
"id": "http://www.grid.ac/institutes/grid.8664.c",
"name": [
"Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK",
"University of Giessen, Giessen, Germany"
],
"type": "Organization"
},
"familyName": "Maraun",
"givenName": "Douglas",
"id": "sg:person.015170627150.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170627150.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire des Sciences du Climat et de l\u2019Environnement, 91191, Gif-sur-Yvette, France",
"id": "http://www.grid.ac/institutes/grid.457340.1",
"name": [
"Laboratoire des Sciences du Climat et de l\u2019Environnement, 91191, Gif-sur-Yvette, France"
],
"type": "Organization"
},
"familyName": "Rust",
"givenName": "Henning W.",
"id": "sg:person.011003430317.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003430317.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK"
],
"type": "Organization"
},
"familyName": "Osborn",
"givenName": "Timothy J.",
"id": "sg:person.01137064640.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10687-007-0032-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022583551",
"https://doi.org/10.1007/s10687-007-0032-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01054476",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044389138",
"https://doi.org/10.1007/bf01054476"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-009-0710-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007932541",
"https://doi.org/10.1007/s00382-009-0710-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11069-004-4546-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027576359",
"https://doi.org/10.1007/s11069-004-4546-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-5449-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018032998",
"https://doi.org/10.1007/978-1-4612-5449-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjst/e2009-01093-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004415048",
"https://doi.org/10.1140/epjst/e2009-01093-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-33483-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012537231",
"https://doi.org/10.1007/978-3-642-33483-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02532251",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001604786",
"https://doi.org/10.1007/bf02532251"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-3244-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705878",
"https://doi.org/10.1007/978-1-4899-3244-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-01-23",
"datePublishedReg": "2010-01-23",
"description": "We develop a vector generalised linear model to describe the influence of the atmospheric circulation on extreme daily precipitation across the UK. The atmospheric circulation is represented by three covariates, namely synoptic scale airflow strength, direction and vorticity; the extremes are represented by the monthly maxima of daily precipitation, modelled by the generalised extreme value distribution (GEV). The model parameters for data from 689 rain gauges across the UK are estimated using a maximum likelihood estimator. Within the framework of vector generalised linear models, various plausible models exist to describe the influence of the individual covariates, possible nonlinearities in the covariates and seasonality. We selected the final model based on the Akaike information criterion (AIC), and evaluated the predictive power of individual covariates by means of quantile verification scores and leave-one-out cross validation. The final model conditions the location and scale parameter of the GEV on all three covariates; the shape parameter is modelled as a constant. The relationships between strength and vorticity on the one hand, and the GEV location and scale parameters on the other hand are modelled as natural cubic splines with two degrees of freedom. The influence of direction is parameterised as a sine with amplitude and phase. The final model has a common parameterisation for the whole year. Seasonality is partly captured by the covariates themselves, but mostly by an additional annual cycle that is parameterised as a phase-shifted sine and accounts for physical influences that we have not attempted to explicitly model, such as humidity.",
"genre": "article",
"id": "sg:pub.10.1007/s10687-010-0102-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.2756731",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1047855",
"issn": [
"1386-1999",
"1572-915X"
],
"name": "Extremes",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "13"
}
],
"keywords": [
"generalised extreme value distribution",
"atmospheric circulation",
"daily precipitation",
"daily precipitation extremes",
"extreme daily precipitation",
"synoptic airflows",
"GEV location",
"precipitation extremes",
"rain gauges",
"framework of vector",
"common parameterisation",
"annual cycle",
"monthly maxima",
"extreme value distribution",
"verification scores",
"airflow strength",
"whole year",
"precipitation",
"physical influences",
"seasonality",
"circulation",
"extremes",
"value distribution",
"vorticity",
"model parameters",
"plausible model",
"parameterisation",
"model conditions",
"one-out cross validation",
"location",
"gauge",
"humidity",
"Akaike information criterion",
"maximum",
"shape parameters",
"scale parameter",
"model",
"influence",
"possible nonlinearities",
"final model",
"direction",
"cycle",
"linear model",
"distribution",
"cross validation",
"airflow",
"amplitude",
"parameters",
"UK",
"data",
"phase",
"information criterion",
"conditions",
"years",
"validation",
"relationship",
"strength",
"individual covariates",
"predictive power",
"hand",
"degree",
"influence of direction",
"means",
"framework",
"splines",
"sine",
"nonlinearity",
"vector",
"cubic splines",
"criteria",
"covariates",
"constants",
"degrees of freedom",
"estimator",
"natural cubic splines",
"power",
"maximum likelihood estimator",
"likelihood estimator",
"scores",
"freedom"
],
"name": "Synoptic airflow and UK daily precipitation extremes",
"pagination": "133-153",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028663432"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10687-010-0102-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10687-010-0102-x",
"https://app.dimensions.ai/details/publication/pub.1028663432"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_522.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10687-010-0102-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0102-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0102-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0102-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10687-010-0102-x'
This table displays all metadata directly associated to this object as RDF triples.
201 TRIPLES
22 PREDICATES
115 URIs
97 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10687-010-0102-x | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:09 |
3 | ″ | ″ | anzsrc-for:14 |
4 | ″ | schema:author | N5c192e005957495195dde0c45f9f4279 |
5 | ″ | schema:citation | sg:pub.10.1007/978-1-4612-5449-2 |
6 | ″ | ″ | sg:pub.10.1007/978-1-4899-3244-0 |
7 | ″ | ″ | sg:pub.10.1007/978-3-642-33483-2 |
8 | ″ | ″ | sg:pub.10.1007/bf01054476 |
9 | ″ | ″ | sg:pub.10.1007/bf02532251 |
10 | ″ | ″ | sg:pub.10.1007/s00382-009-0710-9 |
11 | ″ | ″ | sg:pub.10.1007/s10687-007-0032-4 |
12 | ″ | ″ | sg:pub.10.1007/s11069-004-4546-7 |
13 | ″ | ″ | sg:pub.10.1140/epjst/e2009-01093-7 |
14 | ″ | schema:datePublished | 2010-01-23 |
15 | ″ | schema:datePublishedReg | 2010-01-23 |
16 | ″ | schema:description | We develop a vector generalised linear model to describe the influence of the atmospheric circulation on extreme daily precipitation across the UK. The atmospheric circulation is represented by three covariates, namely synoptic scale airflow strength, direction and vorticity; the extremes are represented by the monthly maxima of daily precipitation, modelled by the generalised extreme value distribution (GEV). The model parameters for data from 689 rain gauges across the UK are estimated using a maximum likelihood estimator. Within the framework of vector generalised linear models, various plausible models exist to describe the influence of the individual covariates, possible nonlinearities in the covariates and seasonality. We selected the final model based on the Akaike information criterion (AIC), and evaluated the predictive power of individual covariates by means of quantile verification scores and leave-one-out cross validation. The final model conditions the location and scale parameter of the GEV on all three covariates; the shape parameter is modelled as a constant. The relationships between strength and vorticity on the one hand, and the GEV location and scale parameters on the other hand are modelled as natural cubic splines with two degrees of freedom. The influence of direction is parameterised as a sine with amplitude and phase. The final model has a common parameterisation for the whole year. Seasonality is partly captured by the covariates themselves, but mostly by an additional annual cycle that is parameterised as a phase-shifted sine and accounts for physical influences that we have not attempted to explicitly model, such as humidity. |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | N676c665e59604800a14eee3f0e25e5aa |
21 | ″ | ″ | Ne8e463a65d7749d48782afcd2c3a946b |
22 | ″ | ″ | sg:journal.1047855 |
23 | ″ | schema:keywords | Akaike information criterion |
24 | ″ | ″ | GEV location |
25 | ″ | ″ | UK |
26 | ″ | ″ | airflow |
27 | ″ | ″ | airflow strength |
28 | ″ | ″ | amplitude |
29 | ″ | ″ | annual cycle |
30 | ″ | ″ | atmospheric circulation |
31 | ″ | ″ | circulation |
32 | ″ | ″ | common parameterisation |
33 | ″ | ″ | conditions |
34 | ″ | ″ | constants |
35 | ″ | ″ | covariates |
36 | ″ | ″ | criteria |
37 | ″ | ″ | cross validation |
38 | ″ | ″ | cubic splines |
39 | ″ | ″ | cycle |
40 | ″ | ″ | daily precipitation |
41 | ″ | ″ | daily precipitation extremes |
42 | ″ | ″ | data |
43 | ″ | ″ | degree |
44 | ″ | ″ | degrees of freedom |
45 | ″ | ″ | direction |
46 | ″ | ″ | distribution |
47 | ″ | ″ | estimator |
48 | ″ | ″ | extreme daily precipitation |
49 | ″ | ″ | extreme value distribution |
50 | ″ | ″ | extremes |
51 | ″ | ″ | final model |
52 | ″ | ″ | framework |
53 | ″ | ″ | framework of vector |
54 | ″ | ″ | freedom |
55 | ″ | ″ | gauge |
56 | ″ | ″ | generalised extreme value distribution |
57 | ″ | ″ | hand |
58 | ″ | ″ | humidity |
59 | ″ | ″ | individual covariates |
60 | ″ | ″ | influence |
61 | ″ | ″ | influence of direction |
62 | ″ | ″ | information criterion |
63 | ″ | ″ | likelihood estimator |
64 | ″ | ″ | linear model |
65 | ″ | ″ | location |
66 | ″ | ″ | maximum |
67 | ″ | ″ | maximum likelihood estimator |
68 | ″ | ″ | means |
69 | ″ | ″ | model |
70 | ″ | ″ | model conditions |
71 | ″ | ″ | model parameters |
72 | ″ | ″ | monthly maxima |
73 | ″ | ″ | natural cubic splines |
74 | ″ | ″ | nonlinearity |
75 | ″ | ″ | one-out cross validation |
76 | ″ | ″ | parameterisation |
77 | ″ | ″ | parameters |
78 | ″ | ″ | phase |
79 | ″ | ″ | physical influences |
80 | ″ | ″ | plausible model |
81 | ″ | ″ | possible nonlinearities |
82 | ″ | ″ | power |
83 | ″ | ″ | precipitation |
84 | ″ | ″ | precipitation extremes |
85 | ″ | ″ | predictive power |
86 | ″ | ″ | rain gauges |
87 | ″ | ″ | relationship |
88 | ″ | ″ | scale parameter |
89 | ″ | ″ | scores |
90 | ″ | ″ | seasonality |
91 | ″ | ″ | shape parameters |
92 | ″ | ″ | sine |
93 | ″ | ″ | splines |
94 | ″ | ″ | strength |
95 | ″ | ″ | synoptic airflows |
96 | ″ | ″ | validation |
97 | ″ | ″ | value distribution |
98 | ″ | ″ | vector |
99 | ″ | ″ | verification scores |
100 | ″ | ″ | vorticity |
101 | ″ | ″ | whole year |
102 | ″ | ″ | years |
103 | ″ | schema:name | Synoptic airflow and UK daily precipitation extremes |
104 | ″ | schema:pagination | 133-153 |
105 | ″ | schema:productId | N42ef9528421a4f708ece88f64d9316cb |
106 | ″ | ″ | N5ba18323acee4fd2a6fe17dbc6322941 |
107 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028663432 |
108 | ″ | ″ | https://doi.org/10.1007/s10687-010-0102-x |
109 | ″ | schema:sdDatePublished | 2022-06-01T22:09 |
110 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
111 | ″ | schema:sdPublisher | Nbc15b734c9994f9886af6da679a4c44e |
112 | ″ | schema:url | https://doi.org/10.1007/s10687-010-0102-x |
113 | ″ | sgo:license | sg:explorer/license/ |
114 | ″ | sgo:sdDataset | articles |
115 | ″ | rdf:type | schema:ScholarlyArticle |
116 | N42ef9528421a4f708ece88f64d9316cb | schema:name | doi |
117 | ″ | schema:value | 10.1007/s10687-010-0102-x |
118 | ″ | rdf:type | schema:PropertyValue |
119 | N5b9bde049b46419dbd58c8bb6db1e9be | rdf:first | sg:person.011003430317.09 |
120 | ″ | rdf:rest | Na77fb28c1ae7400d91898c664d0c6431 |
121 | N5ba18323acee4fd2a6fe17dbc6322941 | schema:name | dimensions_id |
122 | ″ | schema:value | pub.1028663432 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | N5c192e005957495195dde0c45f9f4279 | rdf:first | sg:person.015170627150.69 |
125 | ″ | rdf:rest | N5b9bde049b46419dbd58c8bb6db1e9be |
126 | N676c665e59604800a14eee3f0e25e5aa | schema:issueNumber | 2 |
127 | ″ | rdf:type | schema:PublicationIssue |
128 | Na77fb28c1ae7400d91898c664d0c6431 | rdf:first | sg:person.01137064640.48 |
129 | ″ | rdf:rest | rdf:nil |
130 | Nbc15b734c9994f9886af6da679a4c44e | schema:name | Springer Nature - SN SciGraph project |
131 | ″ | rdf:type | schema:Organization |
132 | Ne8e463a65d7749d48782afcd2c3a946b | schema:volumeNumber | 13 |
133 | ″ | rdf:type | schema:PublicationVolume |
134 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
135 | ″ | schema:name | Mathematical Sciences |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
138 | ″ | schema:name | Engineering |
139 | ″ | rdf:type | schema:DefinedTerm |
140 | anzsrc-for:14 | schema:inDefinedTermSet | anzsrc-for: |
141 | ″ | schema:name | Economics |
142 | ″ | rdf:type | schema:DefinedTerm |
143 | sg:grant.2756731 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10687-010-0102-x |
144 | ″ | rdf:type | schema:MonetaryGrant |
145 | sg:journal.1047855 | schema:issn | 1386-1999 |
146 | ″ | ″ | 1572-915X |
147 | ″ | schema:name | Extremes |
148 | ″ | schema:publisher | Springer Nature |
149 | ″ | rdf:type | schema:Periodical |
150 | sg:person.011003430317.09 | schema:affiliation | grid-institutes:grid.457340.1 |
151 | ″ | schema:familyName | Rust |
152 | ″ | schema:givenName | Henning W. |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003430317.09 |
154 | ″ | rdf:type | schema:Person |
155 | sg:person.01137064640.48 | schema:affiliation | grid-institutes:None |
156 | ″ | schema:familyName | Osborn |
157 | ″ | schema:givenName | Timothy J. |
158 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48 |
159 | ″ | rdf:type | schema:Person |
160 | sg:person.015170627150.69 | schema:affiliation | grid-institutes:grid.8664.c |
161 | ″ | schema:familyName | Maraun |
162 | ″ | schema:givenName | Douglas |
163 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170627150.69 |
164 | ″ | rdf:type | schema:Person |
165 | sg:pub.10.1007/978-1-4612-5449-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018032998 |
166 | ″ | ″ | https://doi.org/10.1007/978-1-4612-5449-2 |
167 | ″ | rdf:type | schema:CreativeWork |
168 | sg:pub.10.1007/978-1-4899-3244-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1109705878 |
169 | ″ | ″ | https://doi.org/10.1007/978-1-4899-3244-0 |
170 | ″ | rdf:type | schema:CreativeWork |
171 | sg:pub.10.1007/978-3-642-33483-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012537231 |
172 | ″ | ″ | https://doi.org/10.1007/978-3-642-33483-2 |
173 | ″ | rdf:type | schema:CreativeWork |
174 | sg:pub.10.1007/bf01054476 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044389138 |
175 | ″ | ″ | https://doi.org/10.1007/bf01054476 |
176 | ″ | rdf:type | schema:CreativeWork |
177 | sg:pub.10.1007/bf02532251 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001604786 |
178 | ″ | ″ | https://doi.org/10.1007/bf02532251 |
179 | ″ | rdf:type | schema:CreativeWork |
180 | sg:pub.10.1007/s00382-009-0710-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007932541 |
181 | ″ | ″ | https://doi.org/10.1007/s00382-009-0710-9 |
182 | ″ | rdf:type | schema:CreativeWork |
183 | sg:pub.10.1007/s10687-007-0032-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022583551 |
184 | ″ | ″ | https://doi.org/10.1007/s10687-007-0032-4 |
185 | ″ | rdf:type | schema:CreativeWork |
186 | sg:pub.10.1007/s11069-004-4546-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027576359 |
187 | ″ | ″ | https://doi.org/10.1007/s11069-004-4546-7 |
188 | ″ | rdf:type | schema:CreativeWork |
189 | sg:pub.10.1140/epjst/e2009-01093-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004415048 |
190 | ″ | ″ | https://doi.org/10.1140/epjst/e2009-01093-7 |
191 | ″ | rdf:type | schema:CreativeWork |
192 | grid-institutes:None | schema:alternateName | Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK |
193 | ″ | schema:name | Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK |
194 | ″ | rdf:type | schema:Organization |
195 | grid-institutes:grid.457340.1 | schema:alternateName | Laboratoire des Sciences du Climat et de l’Environnement, 91191, Gif-sur-Yvette, France |
196 | ″ | schema:name | Laboratoire des Sciences du Climat et de l’Environnement, 91191, Gif-sur-Yvette, France |
197 | ″ | rdf:type | schema:Organization |
198 | grid-institutes:grid.8664.c | schema:alternateName | University of Giessen, Giessen, Germany |
199 | ″ | schema:name | Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK |
200 | ″ | ″ | University of Giessen, Giessen, Germany |
201 | ″ | rdf:type | schema:Organization |