Ontology type: schema:ScholarlyArticle
2005-12
AUTHORSAnastassia Baxevani, Igor Rychlik, Richard J. Wilson
ABSTRACTSignificant wave height, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document}, is a measure of the variability of the ocean surface and is defined to be four times the standard deviation of the height of the ocean surface. In this paper, we present a methodology for modelling estimates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} over space and time, using data obtained from satellite measurements. These estimates can be thought of as a random surface in space which develops over time. For each fixed time and over some limited region in space, the field consisting of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates may be considered stationary. Furthermore, it is reasonable to assume that the (natural) logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates are normally distributed. Under these assumptions and for each fixed time, the marginal distribution over space of the random field of the logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates is fitted by estimating its mean and covariance function, where the form of the covariance function is chosen to allow for correlation patterns at different spatial scales in the data. Both the mean and the covariance function of this model are allowed to be time dependent. A new methodology is developed for estimating the parameters of the chosen covariance structure. The proposed model is validated along the TOPEX-Poseidon satellite tracks by computing distributions of different quantities for the fitted model and comparing these to empirical estimates. Finally, the fitted model is used to compute the distribution of the global maximum over a certain region in the North Atlantic and to reconstruct the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} field. More... »
PAGES267-294
http://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2
DOIhttp://dx.doi.org/10.1007/s10687-006-0002-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007005642
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geomatic Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Center for Mathematical Sciences, University of Lund, Lund, Sweden",
"id": "http://www.grid.ac/institutes/grid.4514.4",
"name": [
"Center for Mathematical Sciences, University of Lund, Lund, Sweden"
],
"type": "Organization"
},
"familyName": "Baxevani",
"givenName": "Anastassia",
"id": "sg:person.011216570143.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216570143.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Mathematical Sciences, University of Lund, Lund, Sweden",
"id": "http://www.grid.ac/institutes/grid.4514.4",
"name": [
"Center for Mathematical Sciences, University of Lund, Lund, Sweden"
],
"type": "Organization"
},
"familyName": "Rychlik",
"givenName": "Igor",
"id": "sg:person.015546022606.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia",
"id": "http://www.grid.ac/institutes/grid.1003.2",
"name": [
"Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia"
],
"type": "Organization"
},
"familyName": "Wilson",
"givenName": "Richard J.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1022123321967",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023059558",
"https://doi.org/10.1023/a:1022123321967"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-5449-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018032998",
"https://doi.org/10.1007/978-1-4612-5449-2"
],
"type": "CreativeWork"
}
],
"datePublished": "2005-12",
"datePublishedReg": "2005-12-01",
"description": "Significant wave height, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document}, is a measure of the variability of the ocean surface and is defined to be four times the standard deviation of the height of the ocean surface. In this paper, we present a methodology for modelling estimates of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} over space and time, using data obtained from satellite measurements. These estimates can be thought of as a random surface in space which develops over time. For each fixed time and over some limited region in space, the field consisting of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} estimates may be considered stationary. Furthermore, it is reasonable to assume that the (natural) logarithms of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} estimates are normally distributed. Under these assumptions and for each fixed time, the marginal distribution over space of the random field of the logarithms of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} estimates is fitted by estimating its mean and covariance function, where the form of the covariance function is chosen to allow for correlation patterns at different spatial scales in the data. Both the mean and the covariance function of this model are allowed to be time dependent. A new methodology is developed for estimating the parameters of the chosen covariance structure. The proposed model is validated along the TOPEX-Poseidon satellite tracks by computing distributions of different quantities for the fitted model and comparing these to empirical estimates. Finally, the fitted model is used to compute the distribution of the global maximum over a certain region in the North Atlantic and to reconstruct the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} field.",
"genre": "article",
"id": "sg:pub.10.1007/s10687-006-0002-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1047855",
"issn": [
"1386-1999",
"1572-915X"
],
"name": "Extremes",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "8"
}
],
"keywords": [
"significant wave height",
"ocean surface",
"wave height",
"North Atlantic",
"satellite measurements",
"space variability",
"satellite tracks",
"different spatial scales",
"spatial scales",
"correlation patterns",
"limited region",
"variability",
"covariance function",
"estimates",
"certain regions",
"Atlantic",
"empirical estimates",
"height",
"region",
"distribution",
"surface",
"maximum",
"standard deviation",
"track",
"model",
"data",
"field",
"scale",
"new methodology",
"time",
"marginal distributions",
"covariance structure",
"patterns",
"measurements",
"different quantities",
"quantity",
"space",
"methodology",
"means",
"deviation",
"new method",
"assumption",
"parameters",
"structure",
"logarithm",
"random fields",
"form",
"global maximum",
"method",
"paper",
"function",
"measures",
"random surfaces"
],
"name": "A new method for modelling the space variability of significant wave height",
"pagination": "267-294",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007005642"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10687-006-0002-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10687-006-0002-2",
"https://app.dimensions.ai/details/publication/pub.1007005642"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_398.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10687-006-0002-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
22 PREDICATES
81 URIs
71 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10687-006-0002-2 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0909 |
3 | ″ | schema:author | N0f96cd8834fd44298431be4925d88e9f |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4612-5449-2 |
5 | ″ | ″ | sg:pub.10.1023/a:1022123321967 |
6 | ″ | schema:datePublished | 2005-12 |
7 | ″ | schema:datePublishedReg | 2005-12-01 |
8 | ″ | schema:description | Significant wave height, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document}, is a measure of the variability of the ocean surface and is defined to be four times the standard deviation of the height of the ocean surface. In this paper, we present a methodology for modelling estimates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} over space and time, using data obtained from satellite measurements. These estimates can be thought of as a random surface in space which develops over time. For each fixed time and over some limited region in space, the field consisting of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates may be considered stationary. Furthermore, it is reasonable to assume that the (natural) logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates are normally distributed. Under these assumptions and for each fixed time, the marginal distribution over space of the random field of the logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates is fitted by estimating its mean and covariance function, where the form of the covariance function is chosen to allow for correlation patterns at different spatial scales in the data. Both the mean and the covariance function of this model are allowed to be time dependent. A new methodology is developed for estimating the parameters of the chosen covariance structure. The proposed model is validated along the TOPEX-Poseidon satellite tracks by computing distributions of different quantities for the fitted model and comparing these to empirical estimates. Finally, the fitted model is used to compute the distribution of the global maximum over a certain region in the North Atlantic and to reconstruct the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} field. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N63eb8690b0204636bb65b66ea6326d92 |
13 | ″ | ″ | Nec999546f99b433086b8c41753fce147 |
14 | ″ | ″ | sg:journal.1047855 |
15 | ″ | schema:keywords | Atlantic |
16 | ″ | ″ | North Atlantic |
17 | ″ | ″ | assumption |
18 | ″ | ″ | certain regions |
19 | ″ | ″ | correlation patterns |
20 | ″ | ″ | covariance function |
21 | ″ | ″ | covariance structure |
22 | ″ | ″ | data |
23 | ″ | ″ | deviation |
24 | ″ | ″ | different quantities |
25 | ″ | ″ | different spatial scales |
26 | ″ | ″ | distribution |
27 | ″ | ″ | empirical estimates |
28 | ″ | ″ | estimates |
29 | ″ | ″ | field |
30 | ″ | ″ | form |
31 | ″ | ″ | function |
32 | ″ | ″ | global maximum |
33 | ″ | ″ | height |
34 | ″ | ″ | limited region |
35 | ″ | ″ | logarithm |
36 | ″ | ″ | marginal distributions |
37 | ″ | ″ | maximum |
38 | ″ | ″ | means |
39 | ″ | ″ | measurements |
40 | ″ | ″ | measures |
41 | ″ | ″ | method |
42 | ″ | ″ | methodology |
43 | ″ | ″ | model |
44 | ″ | ″ | new method |
45 | ″ | ″ | new methodology |
46 | ″ | ″ | ocean surface |
47 | ″ | ″ | paper |
48 | ″ | ″ | parameters |
49 | ″ | ″ | patterns |
50 | ″ | ″ | quantity |
51 | ″ | ″ | random fields |
52 | ″ | ″ | random surfaces |
53 | ″ | ″ | region |
54 | ″ | ″ | satellite measurements |
55 | ″ | ″ | satellite tracks |
56 | ″ | ″ | scale |
57 | ″ | ″ | significant wave height |
58 | ″ | ″ | space |
59 | ″ | ″ | space variability |
60 | ″ | ″ | spatial scales |
61 | ″ | ″ | standard deviation |
62 | ″ | ″ | structure |
63 | ″ | ″ | surface |
64 | ″ | ″ | time |
65 | ″ | ″ | track |
66 | ″ | ″ | variability |
67 | ″ | ″ | wave height |
68 | ″ | schema:name | A new method for modelling the space variability of significant wave height |
69 | ″ | schema:pagination | 267-294 |
70 | ″ | schema:productId | Nb40933b71aa342978b769c192dfea5da |
71 | ″ | ″ | Ncfceccd2d6a34356bd1c6df04778302c |
72 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007005642 |
73 | ″ | ″ | https://doi.org/10.1007/s10687-006-0002-2 |
74 | ″ | schema:sdDatePublished | 2022-06-01T22:05 |
75 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
76 | ″ | schema:sdPublisher | Nb6540cf1c9d3480eb35da465f65ba6e7 |
77 | ″ | schema:url | https://doi.org/10.1007/s10687-006-0002-2 |
78 | ″ | sgo:license | sg:explorer/license/ |
79 | ″ | sgo:sdDataset | articles |
80 | ″ | rdf:type | schema:ScholarlyArticle |
81 | N0f96cd8834fd44298431be4925d88e9f | rdf:first | sg:person.011216570143.68 |
82 | ″ | rdf:rest | N86279253d7a94708806608a8ff26ee90 |
83 | N22f12ffef48847be9266c4dd5cd1a155 | rdf:first | Nf16243ec62314032a2a2633db7e95003 |
84 | ″ | rdf:rest | rdf:nil |
85 | N63eb8690b0204636bb65b66ea6326d92 | schema:issueNumber | 4 |
86 | ″ | rdf:type | schema:PublicationIssue |
87 | N86279253d7a94708806608a8ff26ee90 | rdf:first | sg:person.015546022606.95 |
88 | ″ | rdf:rest | N22f12ffef48847be9266c4dd5cd1a155 |
89 | Nb40933b71aa342978b769c192dfea5da | schema:name | dimensions_id |
90 | ″ | schema:value | pub.1007005642 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | Nb6540cf1c9d3480eb35da465f65ba6e7 | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | Ncfceccd2d6a34356bd1c6df04778302c | schema:name | doi |
95 | ″ | schema:value | 10.1007/s10687-006-0002-2 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Nec999546f99b433086b8c41753fce147 | schema:volumeNumber | 8 |
98 | ″ | rdf:type | schema:PublicationVolume |
99 | Nf16243ec62314032a2a2633db7e95003 | schema:affiliation | grid-institutes:grid.1003.2 |
100 | ″ | schema:familyName | Wilson |
101 | ″ | schema:givenName | Richard J. |
102 | ″ | rdf:type | schema:Person |
103 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Engineering |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0909 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Geomatic Engineering |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | sg:journal.1047855 | schema:issn | 1386-1999 |
110 | ″ | ″ | 1572-915X |
111 | ″ | schema:name | Extremes |
112 | ″ | schema:publisher | Springer Nature |
113 | ″ | rdf:type | schema:Periodical |
114 | sg:person.011216570143.68 | schema:affiliation | grid-institutes:grid.4514.4 |
115 | ″ | schema:familyName | Baxevani |
116 | ″ | schema:givenName | Anastassia |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216570143.68 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.015546022606.95 | schema:affiliation | grid-institutes:grid.4514.4 |
120 | ″ | schema:familyName | Rychlik |
121 | ″ | schema:givenName | Igor |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95 |
123 | ″ | rdf:type | schema:Person |
124 | sg:pub.10.1007/978-1-4612-5449-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018032998 |
125 | ″ | ″ | https://doi.org/10.1007/978-1-4612-5449-2 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1023/a:1022123321967 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023059558 |
128 | ″ | ″ | https://doi.org/10.1023/a:1022123321967 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | grid-institutes:grid.1003.2 | schema:alternateName | Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia |
131 | ″ | schema:name | Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia |
132 | ″ | rdf:type | schema:Organization |
133 | grid-institutes:grid.4514.4 | schema:alternateName | Center for Mathematical Sciences, University of Lund, Lund, Sweden |
134 | ″ | schema:name | Center for Mathematical Sciences, University of Lund, Lund, Sweden |
135 | ″ | rdf:type | schema:Organization |