A new method for modelling the space variability of significant wave height View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-12

AUTHORS

Anastassia Baxevani, Igor Rychlik, Richard J. Wilson

ABSTRACT

Significant wave height, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document}, is a measure of the variability of the ocean surface and is defined to be four times the standard deviation of the height of the ocean surface. In this paper, we present a methodology for modelling estimates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} over space and time, using data obtained from satellite measurements. These estimates can be thought of as a random surface in space which develops over time. For each fixed time and over some limited region in space, the field consisting of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates may be considered stationary. Furthermore, it is reasonable to assume that the (natural) logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates are normally distributed. Under these assumptions and for each fixed time, the marginal distribution over space of the random field of the logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates is fitted by estimating its mean and covariance function, where the form of the covariance function is chosen to allow for correlation patterns at different spatial scales in the data. Both the mean and the covariance function of this model are allowed to be time dependent. A new methodology is developed for estimating the parameters of the chosen covariance structure. The proposed model is validated along the TOPEX-Poseidon satellite tracks by computing distributions of different quantities for the fitted model and comparing these to empirical estimates. Finally, the fitted model is used to compute the distribution of the global maximum over a certain region in the North Atlantic and to reconstruct the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} field. More... »

PAGES

267-294

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2

DOI

http://dx.doi.org/10.1007/s10687-006-0002-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007005642


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Mathematical Sciences, University of Lund, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Center for Mathematical Sciences, University of Lund, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baxevani", 
        "givenName": "Anastassia", 
        "id": "sg:person.011216570143.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216570143.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Mathematical Sciences, University of Lund, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Center for Mathematical Sciences, University of Lund, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychlik", 
        "givenName": "Igor", 
        "id": "sg:person.015546022606.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilson", 
        "givenName": "Richard J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1022123321967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023059558", 
          "https://doi.org/10.1023/a:1022123321967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5449-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018032998", 
          "https://doi.org/10.1007/978-1-4612-5449-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "Significant wave height, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document}, is a measure of the variability of the ocean surface and is defined to be four times the standard deviation of the height of the ocean surface. In this paper, we present a methodology for modelling estimates of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} over space and time, using data obtained from satellite measurements. These estimates can be thought of as a random surface in space which develops over time. For each fixed time and over some limited region in space, the field consisting of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} estimates may be considered stationary. Furthermore, it is reasonable to assume that the (natural) logarithms of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} estimates are normally distributed. Under these assumptions and for each fixed time, the marginal distribution over space of the random field of the logarithms of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} estimates is fitted by estimating its mean and covariance function, where the form of the covariance function is chosen to allow for correlation patterns at different spatial scales in the data. Both the mean and the covariance function of this model are allowed to be time dependent. A new methodology is developed for estimating the parameters of the chosen covariance structure. The proposed model is validated along the TOPEX-Poseidon satellite tracks by computing distributions of different quantities for the fitted model and comparing these to empirical estimates. Finally, the fitted model is used to compute the distribution of the global maximum over a certain region in the North Atlantic and to reconstruct the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_s$$\\end{document} field.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10687-006-0002-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047855", 
        "issn": [
          "1386-1999", 
          "1572-915X"
        ], 
        "name": "Extremes", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "significant wave height", 
      "ocean surface", 
      "wave height", 
      "North Atlantic", 
      "satellite measurements", 
      "space variability", 
      "satellite tracks", 
      "different spatial scales", 
      "spatial scales", 
      "correlation patterns", 
      "limited region", 
      "variability", 
      "covariance function", 
      "estimates", 
      "certain regions", 
      "Atlantic", 
      "empirical estimates", 
      "height", 
      "region", 
      "distribution", 
      "surface", 
      "maximum", 
      "standard deviation", 
      "track", 
      "model", 
      "data", 
      "field", 
      "scale", 
      "new methodology", 
      "time", 
      "marginal distributions", 
      "covariance structure", 
      "patterns", 
      "measurements", 
      "different quantities", 
      "quantity", 
      "space", 
      "methodology", 
      "means", 
      "deviation", 
      "new method", 
      "assumption", 
      "parameters", 
      "structure", 
      "logarithm", 
      "random fields", 
      "form", 
      "global maximum", 
      "method", 
      "paper", 
      "function", 
      "measures", 
      "random surfaces"
    ], 
    "name": "A new method for modelling the space variability of significant wave height", 
    "pagination": "267-294", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007005642"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10687-006-0002-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10687-006-0002-2", 
      "https://app.dimensions.ai/details/publication/pub.1007005642"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_398.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10687-006-0002-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10687-006-0002-2'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      81 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10687-006-0002-2 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N0f96cd8834fd44298431be4925d88e9f
4 schema:citation sg:pub.10.1007/978-1-4612-5449-2
5 sg:pub.10.1023/a:1022123321967
6 schema:datePublished 2005-12
7 schema:datePublishedReg 2005-12-01
8 schema:description Significant wave height, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document}, is a measure of the variability of the ocean surface and is defined to be four times the standard deviation of the height of the ocean surface. In this paper, we present a methodology for modelling estimates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} over space and time, using data obtained from satellite measurements. These estimates can be thought of as a random surface in space which develops over time. For each fixed time and over some limited region in space, the field consisting of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates may be considered stationary. Furthermore, it is reasonable to assume that the (natural) logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates are normally distributed. Under these assumptions and for each fixed time, the marginal distribution over space of the random field of the logarithms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} estimates is fitted by estimating its mean and covariance function, where the form of the covariance function is chosen to allow for correlation patterns at different spatial scales in the data. Both the mean and the covariance function of this model are allowed to be time dependent. A new methodology is developed for estimating the parameters of the chosen covariance structure. The proposed model is validated along the TOPEX-Poseidon satellite tracks by computing distributions of different quantities for the fitted model and comparing these to empirical estimates. Finally, the fitted model is used to compute the distribution of the global maximum over a certain region in the North Atlantic and to reconstruct the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_s$$\end{document} field.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N63eb8690b0204636bb65b66ea6326d92
13 Nec999546f99b433086b8c41753fce147
14 sg:journal.1047855
15 schema:keywords Atlantic
16 North Atlantic
17 assumption
18 certain regions
19 correlation patterns
20 covariance function
21 covariance structure
22 data
23 deviation
24 different quantities
25 different spatial scales
26 distribution
27 empirical estimates
28 estimates
29 field
30 form
31 function
32 global maximum
33 height
34 limited region
35 logarithm
36 marginal distributions
37 maximum
38 means
39 measurements
40 measures
41 method
42 methodology
43 model
44 new method
45 new methodology
46 ocean surface
47 paper
48 parameters
49 patterns
50 quantity
51 random fields
52 random surfaces
53 region
54 satellite measurements
55 satellite tracks
56 scale
57 significant wave height
58 space
59 space variability
60 spatial scales
61 standard deviation
62 structure
63 surface
64 time
65 track
66 variability
67 wave height
68 schema:name A new method for modelling the space variability of significant wave height
69 schema:pagination 267-294
70 schema:productId Nb40933b71aa342978b769c192dfea5da
71 Ncfceccd2d6a34356bd1c6df04778302c
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007005642
73 https://doi.org/10.1007/s10687-006-0002-2
74 schema:sdDatePublished 2022-06-01T22:05
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nb6540cf1c9d3480eb35da465f65ba6e7
77 schema:url https://doi.org/10.1007/s10687-006-0002-2
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0f96cd8834fd44298431be4925d88e9f rdf:first sg:person.011216570143.68
82 rdf:rest N86279253d7a94708806608a8ff26ee90
83 N22f12ffef48847be9266c4dd5cd1a155 rdf:first Nf16243ec62314032a2a2633db7e95003
84 rdf:rest rdf:nil
85 N63eb8690b0204636bb65b66ea6326d92 schema:issueNumber 4
86 rdf:type schema:PublicationIssue
87 N86279253d7a94708806608a8ff26ee90 rdf:first sg:person.015546022606.95
88 rdf:rest N22f12ffef48847be9266c4dd5cd1a155
89 Nb40933b71aa342978b769c192dfea5da schema:name dimensions_id
90 schema:value pub.1007005642
91 rdf:type schema:PropertyValue
92 Nb6540cf1c9d3480eb35da465f65ba6e7 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ncfceccd2d6a34356bd1c6df04778302c schema:name doi
95 schema:value 10.1007/s10687-006-0002-2
96 rdf:type schema:PropertyValue
97 Nec999546f99b433086b8c41753fce147 schema:volumeNumber 8
98 rdf:type schema:PublicationVolume
99 Nf16243ec62314032a2a2633db7e95003 schema:affiliation grid-institutes:grid.1003.2
100 schema:familyName Wilson
101 schema:givenName Richard J.
102 rdf:type schema:Person
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
107 schema:name Geomatic Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1047855 schema:issn 1386-1999
110 1572-915X
111 schema:name Extremes
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.011216570143.68 schema:affiliation grid-institutes:grid.4514.4
115 schema:familyName Baxevani
116 schema:givenName Anastassia
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216570143.68
118 rdf:type schema:Person
119 sg:person.015546022606.95 schema:affiliation grid-institutes:grid.4514.4
120 schema:familyName Rychlik
121 schema:givenName Igor
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95
123 rdf:type schema:Person
124 sg:pub.10.1007/978-1-4612-5449-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018032998
125 https://doi.org/10.1007/978-1-4612-5449-2
126 rdf:type schema:CreativeWork
127 sg:pub.10.1023/a:1022123321967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023059558
128 https://doi.org/10.1023/a:1022123321967
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.1003.2 schema:alternateName Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia
131 schema:name Department of Mathematics, The University of Queensland, Brisbane, Qld, Australia
132 rdf:type schema:Organization
133 grid-institutes:grid.4514.4 schema:alternateName Center for Mathematical Sciences, University of Lund, Lund, Sweden
134 schema:name Center for Mathematical Sciences, University of Lund, Lund, Sweden
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...