Uranus and Neptune are key to understand planets with hydrogen atmospheres View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-30

AUTHORS

Tristan Guillot

ABSTRACT

Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed to be fueled by methane condensation which is both extremely abundant and occurs at low optical depth. This means that mapping temperature and methane abundance as a function of position and depth will inform us on how convection organizes in an atmosphere with no surface and condensates that are heavier than the surrounding air, a general feature of gas giants. Using this information will be essential to constrain the interior structure of Uranus and Neptune themselves, but also of Jupiter, Saturn, and numerous exoplanets with hydrogen atmospheres. Owing to the spatial and temporal variability of these atmospheres, an orbiter is required. A probe would provide a reference profile to lift ambiguities inherent to remote observations. It would also measure abundances of noble gases which can be used to reconstruct the history of planet formation in the Solar System. Finally, mapping the planets’ gravity and magnetic fields will be essential to constrain their global composition, structure and evolution. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x

DOI

http://dx.doi.org/10.1007/s10686-021-09812-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142269899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 C\u00f4te d\u2019Azur, Observatoire de la C\u00f4te d\u2019Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France", 
          "id": "http://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, Observatoire de la C\u00f4te d\u2019Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guillot", 
        "givenName": "Tristan", 
        "id": "sg:person.015673772015.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673772015.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature25775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101359727", 
          "https://doi.org/10.1038/nature25775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-55333-7_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107988078", 
          "https://doi.org/10.1007/978-3-319-55333-7_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011522514", 
          "https://doi.org/10.1038/nature11908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101361348", 
          "https://doi.org/10.1038/nature25776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-020-00647-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125349471", 
          "https://doi.org/10.1007/s11214-020-00647-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049438319", 
          "https://doi.org/10.1038/nature12131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104243608", 
          "https://doi.org/10.1038/s41586-018-0156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358299", 
          "https://doi.org/10.1038/nature14278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/323605a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046863253", 
          "https://doi.org/10.1038/323605a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41550-018-0432-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103565775", 
          "https://doi.org/10.1038/s41550-018-0432-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025690417", 
          "https://doi.org/10.1038/ngeo2405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038982643", 
          "https://doi.org/10.1038/35001017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-019-0631-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125618495", 
          "https://doi.org/10.1007/s11214-019-0631-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101365980", 
          "https://doi.org/10.1038/nature25793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024831434", 
          "https://doi.org/10.1038/nature08194"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-30", 
    "datePublishedReg": "2021-10-30", 
    "description": "Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed to be fueled by methane condensation which is both extremely abundant and occurs at low optical depth. This means that mapping temperature and methane abundance as a function of position and depth will inform us on how convection organizes in an atmosphere with no surface and condensates that are heavier than the surrounding air, a general feature of gas giants. Using this information will be essential to constrain the interior structure of Uranus and Neptune themselves, but also of Jupiter, Saturn, and numerous exoplanets with hydrogen atmospheres. Owing to the spatial and temporal variability of these atmospheres, an orbiter is required. A probe would provide a reference profile to lift ambiguities inherent to remote observations. It would also measure abundances of noble gases which can be used to reconstruct the history of planet formation in the Solar System. Finally, mapping the planets\u2019 gravity and magnetic fields will be essential to constrain their global composition, structure and evolution.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10686-021-09812-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136196", 
        "issn": [
          "0922-6435", 
          "1572-9508"
        ], 
        "name": "Experimental Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "solar system", 
      "low optical depth", 
      "methane condensation", 
      "atmospheric dynamics", 
      "methane abundance", 
      "hydrogen atmosphere", 
      "temporal variability", 
      "numerous exoplanets", 
      "gas giants", 
      "planet formation", 
      "optical depth", 
      "remote observations", 
      "noble gases", 
      "function of position", 
      "magnetic field", 
      "interior structure", 
      "Uranus", 
      "atmosphere", 
      "Neptune", 
      "planets", 
      "depth", 
      "reference profile", 
      "mapping temperature", 
      "global composition", 
      "abundance", 
      "storms", 
      "exoplanets", 
      "Jupiter", 
      "Saturn", 
      "Orbiter", 
      "general features", 
      "convection", 
      "variability", 
      "giants", 
      "gases", 
      "structure", 
      "evolution", 
      "gravity", 
      "composition", 
      "field", 
      "probe", 
      "formation", 
      "dynamics", 
      "air", 
      "temperature", 
      "surface", 
      "history", 
      "profile", 
      "condensation", 
      "features", 
      "system", 
      "position", 
      "crucial key", 
      "function", 
      "information", 
      "key", 
      "ambiguity", 
      "observations", 
      "last unexplored planets", 
      "unexplored planets", 
      "structure of planets"
    ], 
    "name": "Uranus and Neptune are key to understand planets with hydrogen atmospheres", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142269899"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10686-021-09812-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10686-021-09812-x", 
      "https://app.dimensions.ai/details/publication/pub.1142269899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_902.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10686-021-09812-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      22 PREDICATES      99 URIs      76 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10686-021-09812-x schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N95a6dbe670ee41838463763ac568181a
4 schema:citation sg:pub.10.1007/978-3-319-55333-7_44
5 sg:pub.10.1007/s11214-019-0631-9
6 sg:pub.10.1007/s11214-020-00647-0
7 sg:pub.10.1038/323605a0
8 sg:pub.10.1038/35001017
9 sg:pub.10.1038/nature08194
10 sg:pub.10.1038/nature11908
11 sg:pub.10.1038/nature12131
12 sg:pub.10.1038/nature14278
13 sg:pub.10.1038/nature25775
14 sg:pub.10.1038/nature25776
15 sg:pub.10.1038/nature25793
16 sg:pub.10.1038/ngeo2405
17 sg:pub.10.1038/s41550-018-0432-1
18 sg:pub.10.1038/s41586-018-0156-5
19 schema:datePublished 2021-10-30
20 schema:datePublishedReg 2021-10-30
21 schema:description Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed to be fueled by methane condensation which is both extremely abundant and occurs at low optical depth. This means that mapping temperature and methane abundance as a function of position and depth will inform us on how convection organizes in an atmosphere with no surface and condensates that are heavier than the surrounding air, a general feature of gas giants. Using this information will be essential to constrain the interior structure of Uranus and Neptune themselves, but also of Jupiter, Saturn, and numerous exoplanets with hydrogen atmospheres. Owing to the spatial and temporal variability of these atmospheres, an orbiter is required. A probe would provide a reference profile to lift ambiguities inherent to remote observations. It would also measure abundances of noble gases which can be used to reconstruct the history of planet formation in the Solar System. Finally, mapping the planets’ gravity and magnetic fields will be essential to constrain their global composition, structure and evolution.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf sg:journal.1136196
26 schema:keywords Jupiter
27 Neptune
28 Orbiter
29 Saturn
30 Uranus
31 abundance
32 air
33 ambiguity
34 atmosphere
35 atmospheric dynamics
36 composition
37 condensation
38 convection
39 crucial key
40 depth
41 dynamics
42 evolution
43 exoplanets
44 features
45 field
46 formation
47 function
48 function of position
49 gas giants
50 gases
51 general features
52 giants
53 global composition
54 gravity
55 history
56 hydrogen atmosphere
57 information
58 interior structure
59 key
60 last unexplored planets
61 low optical depth
62 magnetic field
63 mapping temperature
64 methane abundance
65 methane condensation
66 noble gases
67 numerous exoplanets
68 observations
69 optical depth
70 planet formation
71 planets
72 position
73 probe
74 profile
75 reference profile
76 remote observations
77 solar system
78 storms
79 structure
80 structure of planets
81 surface
82 system
83 temperature
84 temporal variability
85 unexplored planets
86 variability
87 schema:name Uranus and Neptune are key to understand planets with hydrogen atmospheres
88 schema:pagination 1-23
89 schema:productId Nb11e2c5ed3c3495f9d88cd1de554130b
90 Nfe0b42649749414596d1d67e1c5aaf56
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142269899
92 https://doi.org/10.1007/s10686-021-09812-x
93 schema:sdDatePublished 2022-01-01T19:03
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Na87eb06713dd49c496754a2bfb2da6ce
96 schema:url https://doi.org/10.1007/s10686-021-09812-x
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N95a6dbe670ee41838463763ac568181a rdf:first sg:person.015673772015.50
101 rdf:rest rdf:nil
102 Na87eb06713dd49c496754a2bfb2da6ce schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nb11e2c5ed3c3495f9d88cd1de554130b schema:name doi
105 schema:value 10.1007/s10686-021-09812-x
106 rdf:type schema:PropertyValue
107 Nfe0b42649749414596d1d67e1c5aaf56 schema:name dimensions_id
108 schema:value pub.1142269899
109 rdf:type schema:PropertyValue
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
114 schema:name Astronomical and Space Sciences
115 rdf:type schema:DefinedTerm
116 sg:journal.1136196 schema:issn 0922-6435
117 1572-9508
118 schema:name Experimental Astronomy
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.015673772015.50 schema:affiliation grid-institutes:grid.462572.0
122 schema:familyName Guillot
123 schema:givenName Tristan
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673772015.50
125 rdf:type schema:Person
126 sg:pub.10.1007/978-3-319-55333-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107988078
127 https://doi.org/10.1007/978-3-319-55333-7_44
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11214-019-0631-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125618495
130 https://doi.org/10.1007/s11214-019-0631-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11214-020-00647-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125349471
133 https://doi.org/10.1007/s11214-020-00647-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/323605a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046863253
136 https://doi.org/10.1038/323605a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/35001017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038982643
139 https://doi.org/10.1038/35001017
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature08194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024831434
142 https://doi.org/10.1038/nature08194
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature11908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011522514
145 https://doi.org/10.1038/nature11908
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature12131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049438319
148 https://doi.org/10.1038/nature12131
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature14278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358299
151 https://doi.org/10.1038/nature14278
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature25775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101359727
154 https://doi.org/10.1038/nature25775
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature25776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101361348
157 https://doi.org/10.1038/nature25776
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature25793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101365980
160 https://doi.org/10.1038/nature25793
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ngeo2405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025690417
163 https://doi.org/10.1038/ngeo2405
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/s41550-018-0432-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103565775
166 https://doi.org/10.1038/s41550-018-0432-1
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/s41586-018-0156-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243608
169 https://doi.org/10.1038/s41586-018-0156-5
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.462572.0 schema:alternateName Université Côte d’Azur, Observatoire de la Côte d’Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France
172 schema:name Université Côte d’Azur, Observatoire de la Côte d’Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...