Uranus and Neptune are key to understand planets with hydrogen atmospheres View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-30

AUTHORS

Tristan Guillot

ABSTRACT

Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed to be fueled by methane condensation which is both extremely abundant and occurs at low optical depth. This means that mapping temperature and methane abundance as a function of position and depth will inform us on how convection organizes in an atmosphere with no surface and condensates that are heavier than the surrounding air, a general feature of gas giants. Using this information will be essential to constrain the interior structure of Uranus and Neptune themselves, but also of Jupiter, Saturn, and numerous exoplanets with hydrogen atmospheres. Owing to the spatial and temporal variability of these atmospheres, an orbiter is required. A probe would provide a reference profile to lift ambiguities inherent to remote observations. It would also measure abundances of noble gases which can be used to reconstruct the history of planet formation in the Solar System. Finally, mapping the planets’ gravity and magnetic fields will be essential to constrain their global composition, structure and evolution. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x

DOI

http://dx.doi.org/10.1007/s10686-021-09812-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142269899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 C\u00f4te d\u2019Azur, Observatoire de la C\u00f4te d\u2019Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France", 
          "id": "http://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, Observatoire de la C\u00f4te d\u2019Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guillot", 
        "givenName": "Tristan", 
        "id": "sg:person.015673772015.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673772015.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/323605a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046863253", 
          "https://doi.org/10.1038/323605a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-55333-7_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107988078", 
          "https://doi.org/10.1007/978-3-319-55333-7_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049438319", 
          "https://doi.org/10.1038/nature12131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024831434", 
          "https://doi.org/10.1038/nature08194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358299", 
          "https://doi.org/10.1038/nature14278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101359727", 
          "https://doi.org/10.1038/nature25775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038982643", 
          "https://doi.org/10.1038/35001017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101361348", 
          "https://doi.org/10.1038/nature25776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41550-018-0432-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103565775", 
          "https://doi.org/10.1038/s41550-018-0432-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-019-0631-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125618495", 
          "https://doi.org/10.1007/s11214-019-0631-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011522514", 
          "https://doi.org/10.1038/nature11908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-020-00647-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125349471", 
          "https://doi.org/10.1007/s11214-020-00647-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104243608", 
          "https://doi.org/10.1038/s41586-018-0156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025690417", 
          "https://doi.org/10.1038/ngeo2405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101365980", 
          "https://doi.org/10.1038/nature25793"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-30", 
    "datePublishedReg": "2021-10-30", 
    "description": "Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed to be fueled by methane condensation which is both extremely abundant and occurs at low optical depth. This means that mapping temperature and methane abundance as a function of position and depth will inform us on how convection organizes in an atmosphere with no surface and condensates that are heavier than the surrounding air, a general feature of gas giants. Using this information will be essential to constrain the interior structure of Uranus and Neptune themselves, but also of Jupiter, Saturn, and numerous exoplanets with hydrogen atmospheres. Owing to the spatial and temporal variability of these atmospheres, an orbiter is required. A probe would provide a reference profile to lift ambiguities inherent to remote observations. It would also measure abundances of noble gases which can be used to reconstruct the history of planet formation in the Solar System. Finally, mapping the planets\u2019 gravity and magnetic fields will be essential to constrain their global composition, structure and evolution.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10686-021-09812-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136196", 
        "issn": [
          "0922-6435", 
          "1572-9508"
        ], 
        "name": "Experimental Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "solar system", 
      "low optical depth", 
      "methane condensation", 
      "atmospheric dynamics", 
      "methane abundance", 
      "temporal variability", 
      "numerous exoplanets", 
      "hydrogen atmosphere", 
      "optical depth", 
      "planet formation", 
      "gas giants", 
      "remote observations", 
      "noble gases", 
      "magnetic field", 
      "function of position", 
      "interior structure", 
      "atmosphere", 
      "Uranus", 
      "Neptune", 
      "planets", 
      "mapping temperature", 
      "reference profile", 
      "depth", 
      "global composition", 
      "abundance", 
      "storms", 
      "exoplanets", 
      "Jupiter", 
      "Saturn", 
      "Orbiter", 
      "general features", 
      "convection", 
      "variability", 
      "giants", 
      "gases", 
      "structure", 
      "evolution", 
      "gravity", 
      "composition", 
      "probe", 
      "field", 
      "formation", 
      "air", 
      "dynamics", 
      "temperature", 
      "surface", 
      "history", 
      "profile", 
      "crucial key", 
      "condensation", 
      "features", 
      "system", 
      "position", 
      "information", 
      "function", 
      "ambiguity", 
      "key", 
      "observations"
    ], 
    "name": "Uranus and Neptune are key to understand planets with hydrogen atmospheres", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142269899"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10686-021-09812-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10686-021-09812-x", 
      "https://app.dimensions.ai/details/publication/pub.1142269899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_901.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10686-021-09812-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10686-021-09812-x'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      96 URIs      73 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10686-021-09812-x schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Nf56a9f66cbf244d5ba129aeab6f1ac8c
4 schema:citation sg:pub.10.1007/978-3-319-55333-7_44
5 sg:pub.10.1007/s11214-019-0631-9
6 sg:pub.10.1007/s11214-020-00647-0
7 sg:pub.10.1038/323605a0
8 sg:pub.10.1038/35001017
9 sg:pub.10.1038/nature08194
10 sg:pub.10.1038/nature11908
11 sg:pub.10.1038/nature12131
12 sg:pub.10.1038/nature14278
13 sg:pub.10.1038/nature25775
14 sg:pub.10.1038/nature25776
15 sg:pub.10.1038/nature25793
16 sg:pub.10.1038/ngeo2405
17 sg:pub.10.1038/s41550-018-0432-1
18 sg:pub.10.1038/s41586-018-0156-5
19 schema:datePublished 2021-10-30
20 schema:datePublishedReg 2021-10-30
21 schema:description Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed to be fueled by methane condensation which is both extremely abundant and occurs at low optical depth. This means that mapping temperature and methane abundance as a function of position and depth will inform us on how convection organizes in an atmosphere with no surface and condensates that are heavier than the surrounding air, a general feature of gas giants. Using this information will be essential to constrain the interior structure of Uranus and Neptune themselves, but also of Jupiter, Saturn, and numerous exoplanets with hydrogen atmospheres. Owing to the spatial and temporal variability of these atmospheres, an orbiter is required. A probe would provide a reference profile to lift ambiguities inherent to remote observations. It would also measure abundances of noble gases which can be used to reconstruct the history of planet formation in the Solar System. Finally, mapping the planets’ gravity and magnetic fields will be essential to constrain their global composition, structure and evolution.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf sg:journal.1136196
26 schema:keywords Jupiter
27 Neptune
28 Orbiter
29 Saturn
30 Uranus
31 abundance
32 air
33 ambiguity
34 atmosphere
35 atmospheric dynamics
36 composition
37 condensation
38 convection
39 crucial key
40 depth
41 dynamics
42 evolution
43 exoplanets
44 features
45 field
46 formation
47 function
48 function of position
49 gas giants
50 gases
51 general features
52 giants
53 global composition
54 gravity
55 history
56 hydrogen atmosphere
57 information
58 interior structure
59 key
60 low optical depth
61 magnetic field
62 mapping temperature
63 methane abundance
64 methane condensation
65 noble gases
66 numerous exoplanets
67 observations
68 optical depth
69 planet formation
70 planets
71 position
72 probe
73 profile
74 reference profile
75 remote observations
76 solar system
77 storms
78 structure
79 surface
80 system
81 temperature
82 temporal variability
83 variability
84 schema:name Uranus and Neptune are key to understand planets with hydrogen atmospheres
85 schema:pagination 1-23
86 schema:productId N647935ad50d34c4e9e784c8208209bcb
87 Nfab7c1a8b1ff40a1a3e3d037eb5ff658
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142269899
89 https://doi.org/10.1007/s10686-021-09812-x
90 schema:sdDatePublished 2022-05-20T07:39
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N3e104f09823d4d6096cc578ef06fed7d
93 schema:url https://doi.org/10.1007/s10686-021-09812-x
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N3e104f09823d4d6096cc578ef06fed7d schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N647935ad50d34c4e9e784c8208209bcb schema:name dimensions_id
100 schema:value pub.1142269899
101 rdf:type schema:PropertyValue
102 Nf56a9f66cbf244d5ba129aeab6f1ac8c rdf:first sg:person.015673772015.50
103 rdf:rest rdf:nil
104 Nfab7c1a8b1ff40a1a3e3d037eb5ff658 schema:name doi
105 schema:value 10.1007/s10686-021-09812-x
106 rdf:type schema:PropertyValue
107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
111 schema:name Astronomical and Space Sciences
112 rdf:type schema:DefinedTerm
113 sg:journal.1136196 schema:issn 0922-6435
114 1572-9508
115 schema:name Experimental Astronomy
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.015673772015.50 schema:affiliation grid-institutes:grid.462572.0
119 schema:familyName Guillot
120 schema:givenName Tristan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673772015.50
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-319-55333-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107988078
124 https://doi.org/10.1007/978-3-319-55333-7_44
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11214-019-0631-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125618495
127 https://doi.org/10.1007/s11214-019-0631-9
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11214-020-00647-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125349471
130 https://doi.org/10.1007/s11214-020-00647-0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/323605a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046863253
133 https://doi.org/10.1038/323605a0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/35001017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038982643
136 https://doi.org/10.1038/35001017
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature08194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024831434
139 https://doi.org/10.1038/nature08194
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature11908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011522514
142 https://doi.org/10.1038/nature11908
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature12131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049438319
145 https://doi.org/10.1038/nature12131
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature14278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358299
148 https://doi.org/10.1038/nature14278
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature25775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101359727
151 https://doi.org/10.1038/nature25775
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature25776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101361348
154 https://doi.org/10.1038/nature25776
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature25793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101365980
157 https://doi.org/10.1038/nature25793
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ngeo2405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025690417
160 https://doi.org/10.1038/ngeo2405
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/s41550-018-0432-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103565775
163 https://doi.org/10.1038/s41550-018-0432-1
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/s41586-018-0156-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243608
166 https://doi.org/10.1038/s41586-018-0156-5
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.462572.0 schema:alternateName Université Côte d’Azur, Observatoire de la Côte d’Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France
169 schema:name Université Côte d’Azur, Observatoire de la Côte d’Azur, Laboratoire Lagrange, CNRS UMR 7293, Nice, France
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...