Ontology type: schema:ScholarlyArticle Open Access: True
2013-09-22
AUTHORSPaul A. Ruud, Daniel Schunk, Joachim K. Winter
ABSTRACTRounding is a common phenomenon when subjects provide an answer to an open-ended question, both in experimental tasks and in survey responses. From a statistical perspective, rounding implies that the measured variable is a coarsened version of the underlying continuous target variable. Since the coarsening process is non-random, inference from rounded data is generally biased. Despite the potentially severe consequences of rounding, little is known about its causes. In this paper, we focus on subjects’ uncertainty about the target variable as one potential cause for rounding behavior. We present a novel experimental method that induces uncertainty in a controlled way, thus providing causal evidence for the effect of subjects’ uncertainty on the extent of rounding. Then, we specify and estimate a mixture model that relates uncertainty and rounding. The results suggest that an increase in the exogenous level of uncertainty translates into higher variance of the subjects’ beliefs, which in turn results in more rounding. More... »
PAGES391-413
http://scigraph.springernature.com/pub.10.1007/s10683-013-9374-8
DOIhttp://dx.doi.org/10.1007/s10683-013-9374-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028933438
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Commerce, Management, Tourism and Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economic Theory",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1505",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Marketing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Economics, Vassar College, 124 Raymond Ave, 12604-0708, Poughkeepsie, NY, USA",
"id": "http://www.grid.ac/institutes/grid.267778.b",
"name": [
"Department of Economics, Vassar College, 124 Raymond Ave, 12604-0708, Poughkeepsie, NY, USA"
],
"type": "Organization"
},
"familyName": "Ruud",
"givenName": "Paul A.",
"id": "sg:person.011211024051.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011211024051.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Economics, University of Mainz & University of Zurich, Jakob-Welder Weg 4, 55128, Mainz, Germany",
"id": "http://www.grid.ac/institutes/grid.5802.f",
"name": [
"Department of Economics, University of Mainz & University of Zurich, Jakob-Welder Weg 4, 55128, Mainz, Germany"
],
"type": "Organization"
},
"familyName": "Schunk",
"givenName": "Daniel",
"id": "sg:person.01142714471.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142714471.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Economics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany",
"id": "http://www.grid.ac/institutes/grid.5252.0",
"name": [
"Department of Economics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany"
],
"type": "Organization"
},
"familyName": "Winter",
"givenName": "Joachim K.",
"id": "sg:person.01142702273.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142702273.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11166-010-9102-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021088697",
"https://doi.org/10.1007/s11166-010-9102-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10683-010-9244-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000442225",
"https://doi.org/10.1007/s10683-010-9244-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-09-22",
"datePublishedReg": "2013-09-22",
"description": "Rounding is a common phenomenon when subjects provide an answer to an open-ended question, both in experimental tasks and in survey responses. From a statistical perspective, rounding implies that the measured variable is a coarsened version of the underlying continuous target variable. Since the coarsening process is non-random, inference from rounded data is generally biased. Despite the potentially severe consequences of rounding, little is known about its causes. In this paper, we focus on subjects\u2019 uncertainty about the target variable as one potential cause for rounding behavior. We present a novel experimental method that induces uncertainty in a controlled way, thus providing causal evidence for the effect of subjects\u2019 uncertainty on the extent of rounding. Then, we specify and estimate a mixture model that relates uncertainty and rounding. The results suggest that an increase in the exogenous level of uncertainty translates into higher variance of the subjects\u2019 beliefs, which in turn results in more rounding.",
"genre": "article",
"id": "sg:pub.10.1007/s10683-013-9374-8",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136230",
"issn": [
"1386-4157",
"1573-6938"
],
"name": "Experimental Economics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"keywords": [
"potential causes",
"subjects",
"cause",
"exogenous levels",
"severe consequences",
"ended question",
"effects of subjects",
"survey responses",
"causal evidence",
"common phenomenon",
"response",
"evidence",
"subjects' beliefs",
"target",
"levels",
"experimental tasks",
"variables",
"study",
"increase",
"rounding",
"effect",
"beliefs",
"extent",
"data",
"consequences",
"experimental study",
"translates",
"results",
"variance",
"target variables",
"questions",
"method",
"turn",
"model",
"perspective",
"task",
"answers",
"version",
"high variance",
"behavior",
"novel experimental method",
"phenomenon",
"process",
"way",
"uncertainty",
"statistical perspective",
"inference",
"experimental methods",
"mixture model",
"continuous target variable",
"rounded data",
"paper",
"coarsening process"
],
"name": "Uncertainty causes rounding: an experimental study",
"pagination": "391-413",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028933438"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10683-013-9374-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10683-013-9374-8",
"https://app.dimensions.ai/details/publication/pub.1028933438"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:07",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_602.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10683-013-9374-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10683-013-9374-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10683-013-9374-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10683-013-9374-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10683-013-9374-8'
This table displays all metadata directly associated to this object as RDF triples.
151 TRIPLES
22 PREDICATES
83 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10683-013-9374-8 | schema:about | anzsrc-for:14 |
2 | ″ | ″ | anzsrc-for:1401 |
3 | ″ | ″ | anzsrc-for:1402 |
4 | ″ | ″ | anzsrc-for:15 |
5 | ″ | ″ | anzsrc-for:1505 |
6 | ″ | schema:author | Nf6bbf628bd1342f3bfd130eae1e5fee2 |
7 | ″ | schema:citation | sg:pub.10.1007/s10683-010-9244-6 |
8 | ″ | ″ | sg:pub.10.1007/s11166-010-9102-0 |
9 | ″ | schema:datePublished | 2013-09-22 |
10 | ″ | schema:datePublishedReg | 2013-09-22 |
11 | ″ | schema:description | Rounding is a common phenomenon when subjects provide an answer to an open-ended question, both in experimental tasks and in survey responses. From a statistical perspective, rounding implies that the measured variable is a coarsened version of the underlying continuous target variable. Since the coarsening process is non-random, inference from rounded data is generally biased. Despite the potentially severe consequences of rounding, little is known about its causes. In this paper, we focus on subjects’ uncertainty about the target variable as one potential cause for rounding behavior. We present a novel experimental method that induces uncertainty in a controlled way, thus providing causal evidence for the effect of subjects’ uncertainty on the extent of rounding. Then, we specify and estimate a mixture model that relates uncertainty and rounding. The results suggest that an increase in the exogenous level of uncertainty translates into higher variance of the subjects’ beliefs, which in turn results in more rounding. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N645fd4ec5f924275814537ee36e08e31 |
16 | ″ | ″ | Ne7dcf36186c24e78816a183f86f741fe |
17 | ″ | ″ | sg:journal.1136230 |
18 | ″ | schema:keywords | answers |
19 | ″ | ″ | behavior |
20 | ″ | ″ | beliefs |
21 | ″ | ″ | causal evidence |
22 | ″ | ″ | cause |
23 | ″ | ″ | coarsening process |
24 | ″ | ″ | common phenomenon |
25 | ″ | ″ | consequences |
26 | ″ | ″ | continuous target variable |
27 | ″ | ″ | data |
28 | ″ | ″ | effect |
29 | ″ | ″ | effects of subjects |
30 | ″ | ″ | ended question |
31 | ″ | ″ | evidence |
32 | ″ | ″ | exogenous levels |
33 | ″ | ″ | experimental methods |
34 | ″ | ″ | experimental study |
35 | ″ | ″ | experimental tasks |
36 | ″ | ″ | extent |
37 | ″ | ″ | high variance |
38 | ″ | ″ | increase |
39 | ″ | ″ | inference |
40 | ″ | ″ | levels |
41 | ″ | ″ | method |
42 | ″ | ″ | mixture model |
43 | ″ | ″ | model |
44 | ″ | ″ | novel experimental method |
45 | ″ | ″ | paper |
46 | ″ | ″ | perspective |
47 | ″ | ″ | phenomenon |
48 | ″ | ″ | potential causes |
49 | ″ | ″ | process |
50 | ″ | ″ | questions |
51 | ″ | ″ | response |
52 | ″ | ″ | results |
53 | ″ | ″ | rounded data |
54 | ″ | ″ | rounding |
55 | ″ | ″ | severe consequences |
56 | ″ | ″ | statistical perspective |
57 | ″ | ″ | study |
58 | ″ | ″ | subjects |
59 | ″ | ″ | subjects' beliefs |
60 | ″ | ″ | survey responses |
61 | ″ | ″ | target |
62 | ″ | ″ | target variables |
63 | ″ | ″ | task |
64 | ″ | ″ | translates |
65 | ″ | ″ | turn |
66 | ″ | ″ | uncertainty |
67 | ″ | ″ | variables |
68 | ″ | ″ | variance |
69 | ″ | ″ | version |
70 | ″ | ″ | way |
71 | ″ | schema:name | Uncertainty causes rounding: an experimental study |
72 | ″ | schema:pagination | 391-413 |
73 | ″ | schema:productId | N19eef70e661947c3931bc3aa020821eb |
74 | ″ | ″ | N3a85588f701d42b3a691eb630789db5d |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028933438 |
76 | ″ | ″ | https://doi.org/10.1007/s10683-013-9374-8 |
77 | ″ | schema:sdDatePublished | 2022-05-10T10:07 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | Nfb642e60cf194211b06cc3381cb447d7 |
80 | ″ | schema:url | https://doi.org/10.1007/s10683-013-9374-8 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N07b8960c8e074289964d6f65bffe6905 | rdf:first | sg:person.01142702273.23 |
85 | ″ | rdf:rest | rdf:nil |
86 | N19eef70e661947c3931bc3aa020821eb | schema:name | doi |
87 | ″ | schema:value | 10.1007/s10683-013-9374-8 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N3a85588f701d42b3a691eb630789db5d | schema:name | dimensions_id |
90 | ″ | schema:value | pub.1028933438 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | N603fe3937f4140c1983568ecaa82e5d5 | rdf:first | sg:person.01142714471.43 |
93 | ″ | rdf:rest | N07b8960c8e074289964d6f65bffe6905 |
94 | N645fd4ec5f924275814537ee36e08e31 | schema:issueNumber | 3 |
95 | ″ | rdf:type | schema:PublicationIssue |
96 | Ne7dcf36186c24e78816a183f86f741fe | schema:volumeNumber | 17 |
97 | ″ | rdf:type | schema:PublicationVolume |
98 | Nf6bbf628bd1342f3bfd130eae1e5fee2 | rdf:first | sg:person.011211024051.29 |
99 | ″ | rdf:rest | N603fe3937f4140c1983568ecaa82e5d5 |
100 | Nfb642e60cf194211b06cc3381cb447d7 | schema:name | Springer Nature - SN SciGraph project |
101 | ″ | rdf:type | schema:Organization |
102 | anzsrc-for:14 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Economics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:1401 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Economic Theory |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:1402 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Applied Economics |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:15 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Commerce, Management, Tourism and Services |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | anzsrc-for:1505 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Marketing |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | sg:journal.1136230 | schema:issn | 1386-4157 |
118 | ″ | ″ | 1573-6938 |
119 | ″ | schema:name | Experimental Economics |
120 | ″ | schema:publisher | Springer Nature |
121 | ″ | rdf:type | schema:Periodical |
122 | sg:person.011211024051.29 | schema:affiliation | grid-institutes:grid.267778.b |
123 | ″ | schema:familyName | Ruud |
124 | ″ | schema:givenName | Paul A. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011211024051.29 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.01142702273.23 | schema:affiliation | grid-institutes:grid.5252.0 |
128 | ″ | schema:familyName | Winter |
129 | ″ | schema:givenName | Joachim K. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142702273.23 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.01142714471.43 | schema:affiliation | grid-institutes:grid.5802.f |
133 | ″ | schema:familyName | Schunk |
134 | ″ | schema:givenName | Daniel |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142714471.43 |
136 | ″ | rdf:type | schema:Person |
137 | sg:pub.10.1007/s10683-010-9244-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000442225 |
138 | ″ | ″ | https://doi.org/10.1007/s10683-010-9244-6 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | sg:pub.10.1007/s11166-010-9102-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021088697 |
141 | ″ | ″ | https://doi.org/10.1007/s11166-010-9102-0 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | grid-institutes:grid.267778.b | schema:alternateName | Department of Economics, Vassar College, 124 Raymond Ave, 12604-0708, Poughkeepsie, NY, USA |
144 | ″ | schema:name | Department of Economics, Vassar College, 124 Raymond Ave, 12604-0708, Poughkeepsie, NY, USA |
145 | ″ | rdf:type | schema:Organization |
146 | grid-institutes:grid.5252.0 | schema:alternateName | Department of Economics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany |
147 | ″ | schema:name | Department of Economics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany |
148 | ″ | rdf:type | schema:Organization |
149 | grid-institutes:grid.5802.f | schema:alternateName | Department of Economics, University of Mainz & University of Zurich, Jakob-Welder Weg 4, 55128, Mainz, Germany |
150 | ″ | schema:name | Department of Economics, University of Mainz & University of Zurich, Jakob-Welder Weg 4, 55128, Mainz, Germany |
151 | ″ | rdf:type | schema:Organization |