Genome analysis to identify SNPs associated with oil content and fatty acid components in soybean View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

R. H. G. Priolli, C. R. L. Carvalho, M. M. Bajay, J. B. Pinheiro, N. A. Vello

ABSTRACT

The nutritional value, flavor and stability of soybean oil are determined by its five dominant fatty acids: saturated palmitic and stearic, monounsaturated oleic, and polyunsaturated linoleic and linolenic acids. Identifying molecular markers or quantitative trait loci associated with these components has the potential to facilitate the development of improved varieties and thus improve soybean oil content and quality. In this study, we used the BARCSoySNP6K BeadChip array to conduct a genome analysis of diverse soybean accessions evaluated for 2 years under Brazilian field conditions. The results demonstrated high broad-sense heritability, suggesting that the soybean genotype panel could be useful for oil trait breeding programs. Moreover, the range of oil trait variation among the plant introductions (PIs) was superior to that among the Brazilian cultivars in this study, indicating that a PI population could be used to find genes controlling these traits. The genome analysis showed that the genetic structure of the soybean germplasm comprised two main genetic groups, and it revealed linkage disequilibrium decay of approximately 300 kb. A total of 19 single-nucleotide polymorphism (SNP) loci on ten different chromosomes significantly associated with palmitic acid, oleic acid and total oil contents were discovered. Analysis of the SNP annotations revealed enzymes associated with several oil-related physiological metabolisms. Loci and specific alleles in our soybean panel that contributed to lower palmitic acid contents and higher oleic acid and total oil contents were identified. Overall, this genome analysis confirmed previous findings and identified SNP markers that may be useful to rapidly improve oil traits in soybean. More... »

PAGES

54

References to SciGraph publications

  • 2003-02. Mapping the Fas locus controlling stearic acid content in soybean in THEORETICAL AND APPLIED GENETICS
  • 2017-12. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines) in MOLECULAR GENETICS AND GENOMICS
  • 2011-11. Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans in EUPHYTICA
  • 2015-12. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean in BMC GENOMICS
  • 2008-10. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China in THEORETICAL AND APPLIED GENETICS
  • 2006-11. Modifier QTL for fatty acid composition in soybean oil in EUPHYTICA
  • 2017-12. A genome-wide association study of seed composition traits in wild soybean (Glycine soja) in BMC GENOMICS
  • 1992-12. Restriction fragment length polymorphism analysis of soybean fatty acid content in JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY
  • 2004-12. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci in JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY
  • 2017-12. Identifying and exploring significant genomic regions associated with soybean yield, seed fatty acids, protein and oil in JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY
  • 2012-06. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method in CONSERVATION GENETICS RESOURCES
  • 2017-08. Population structure, genetic relatedness and linkage disequilibrium blocks in cultivars of tropical soybean (Glycine max) in EUPHYTICA
  • 2011-12. GWAPower: a statistical power calculation software for genome-wide association studies with quantitative traits in BMC GENETICS
  • 2010-04. Mixed linear model approach adapted for genome-wide association studies in NATURE GENETICS
  • 2015-12. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean in BMC GENOMICS
  • 2009-08. The genetics of quantitative traits: challenges and prospects in NATURE REVIEWS GENETICS
  • 2016-08. Development and application of a novel genome-wide SNP array reveals domestication history in soybean in SCIENTIFIC REPORTS
  • 2014-12. A genome-wide association study of seed protein and oil content in soybean in BMC GENOMICS
  • 2015-05. Association mapping of oil content and fatty acid components in soybean in EUPHYTICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10681-019-2378-5

    DOI

    http://dx.doi.org/10.1007/s10681-019-2378-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112227481


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "State University of Campinas", 
              "id": "https://www.grid.ac/institutes/grid.411087.b", 
              "name": [
                "FIFO, UNISANTA, R. Oswaldo Cruz 266, 11045-970, Santos, SP, Brazil", 
                "NEPA, UNICAMP, Av. Albert Einstein 291, 13083-852, Campinas, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Priolli", 
            "givenName": "R. H. G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ag\u00eancia Paulista de Tecnologia dos Agroneg\u00f3cios", 
              "id": "https://www.grid.ac/institutes/grid.452491.f", 
              "name": [
                "IAC, CPDRGV, Av. Barao de Itapura 1481, 13001-970, Campinas, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carvalho", 
            "givenName": "C. R. L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "CERES, UDESC, R. Cel. Fernandes Martins 270, 88790-000, Laguna, SC, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bajay", 
            "givenName": "M. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Department of Genetics, ESALQ, USP, Av Padua Dias 11, 13400-970, Piracicaba, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinheiro", 
            "givenName": "J. B.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Department of Genetics, ESALQ, USP, Av Padua Dias 11, 13400-970, Piracicaba, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vello", 
            "givenName": "N. A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2009.02591.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001719382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2009.02591.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001719382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002660002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.013433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003963807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.013433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003963807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.12755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004354614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-006-9179-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004973071", 
              "https://doi.org/10.1007/s10681-006-9179-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-014-1264-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005238931", 
              "https://doi.org/10.1007/s10681-014-1264-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1811-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005958078", 
              "https://doi.org/10.1186/s12864-015-1811-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-1086-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007474468", 
              "https://doi.org/10.1007/s00122-002-1086-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biombioe.2013.11.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010774716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12686-011-9548-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014160842", 
              "https://doi.org/10.1007/s12686-011-9548-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017784241", 
              "https://doi.org/10.1038/ng.546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017784241", 
              "https://doi.org/10.1038/ng.546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02637690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020378783", 
              "https://doi.org/10.1007/bf02637690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023623483", 
              "https://doi.org/10.1186/1471-2164-15-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9780203908198.ch5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024132889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199008163230703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024700438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0054985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027370572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028217957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep20728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031421593", 
              "https://doi.org/10.1038/srep20728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-2049-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033042123", 
              "https://doi.org/10.1186/s12864-015-2049-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07352689109382313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033477808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.109.146282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034872812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035008603", 
              "https://doi.org/10.1038/nrg2612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035008603", 
              "https://doi.org/10.1038/nrg2612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-12-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035204266", 
              "https://doi.org/10.1186/1471-2156-12-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-011-0524-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037571943", 
              "https://doi.org/10.1007/s10681-011-0524-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11746-004-1027-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038195342", 
              "https://doi.org/10.1007/s11746-004-1027-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-3397-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040898912", 
              "https://doi.org/10.1186/s12864-016-3397-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-3397-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040898912", 
              "https://doi.org/10.1186/s12864-016-3397-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-7652.2009.00408.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041007737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-7652.2009.00408.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041007737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041185259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2014.00244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042664942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0825-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044326136", 
              "https://doi.org/10.1007/s00122-008-0825-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0825-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044326136", 
              "https://doi.org/10.1007/s00122-008-0825-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1415-47572013005000041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045950925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/2041-210x.12067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048231221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051607942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-985x.2010.00676_9.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053380586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1984.0011183x002400030020x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069020082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1991.0011183x003100060027x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069023152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1994.0011183x003400050001x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069024316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1994.0011183x003400060019x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069024418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2003.1858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069028155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2003.4090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069028286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2008.05.0287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069030656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2009.06.0360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069030986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2017.01222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090609535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-017-1966-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090668594", 
              "https://doi.org/10.1007/s10681-017-1966-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-017-1966-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090668594", 
              "https://doi.org/10.1007/s10681-017-1966-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-017-1345-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090673829", 
              "https://doi.org/10.1007/s00438-017-1345-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-017-1345-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090673829", 
              "https://doi.org/10.1007/s00438-017-1345-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12892-017-0020-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099734907", 
              "https://doi.org/10.1007/s12892-017-0020-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "The nutritional value, flavor and stability of soybean oil are determined by its five dominant fatty acids: saturated palmitic and stearic, monounsaturated oleic, and polyunsaturated linoleic and linolenic acids. Identifying molecular markers or quantitative trait loci associated with these components has the potential to facilitate the development of improved varieties and thus improve soybean oil content and quality. In this study, we used the BARCSoySNP6K BeadChip array to conduct a genome analysis of diverse soybean accessions evaluated for 2 years under Brazilian field conditions. The results demonstrated high broad-sense heritability, suggesting that the soybean genotype panel could be useful for oil trait breeding programs. Moreover, the range of oil trait variation among the plant introductions (PIs) was superior to that among the Brazilian cultivars in this study, indicating that a PI population could be used to find genes controlling these traits. The genome analysis showed that the genetic structure of the soybean germplasm comprised two main genetic groups, and it revealed linkage disequilibrium decay of approximately 300 kb. A total of 19 single-nucleotide polymorphism (SNP) loci on ten different chromosomes significantly associated with palmitic acid, oleic acid and total oil contents were discovered. Analysis of the SNP annotations revealed enzymes associated with several oil-related physiological metabolisms. Loci and specific alleles in our soybean panel that contributed to lower palmitic acid contents and higher oleic acid and total oil contents were identified. Overall, this genome analysis confirmed previous findings and identified SNP markers that may be useful to rapidly improve oil traits in soybean.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10681-019-2378-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4486546", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6457487", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1028679", 
            "issn": [
              "0014-2336", 
              "1573-5060"
            ], 
            "name": "Euphytica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "215"
          }
        ], 
        "name": "Genome analysis to identify SNPs associated with oil content and fatty acid components in soybean", 
        "pagination": "54", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9f9603d8e4a5d5ec2bd783b724bcbb6a9fd1cf1a8b17f44d275580a97b38d01d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10681-019-2378-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112227481"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10681-019-2378-5", 
          "https://app.dimensions.ai/details/publication/pub.1112227481"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127459_00000011.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10681-019-2378-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2378-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2378-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2378-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2378-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10681-019-2378-5 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N346ca56f55724ea39885dc73b9216325
    4 schema:citation sg:pub.10.1007/bf02637690
    5 sg:pub.10.1007/s00122-002-1086-y
    6 sg:pub.10.1007/s00122-008-0825-0
    7 sg:pub.10.1007/s00438-017-1345-x
    8 sg:pub.10.1007/s10681-006-9179-3
    9 sg:pub.10.1007/s10681-011-0524-9
    10 sg:pub.10.1007/s10681-014-1264-4
    11 sg:pub.10.1007/s10681-017-1966-5
    12 sg:pub.10.1007/s11746-004-1027-z
    13 sg:pub.10.1007/s12686-011-9548-7
    14 sg:pub.10.1007/s12892-017-0020-0
    15 sg:pub.10.1038/ng.546
    16 sg:pub.10.1038/nrg2612
    17 sg:pub.10.1038/srep20728
    18 sg:pub.10.1186/1471-2156-12-12
    19 sg:pub.10.1186/1471-2164-15-1
    20 sg:pub.10.1186/s12864-015-1811-y
    21 sg:pub.10.1186/s12864-015-2049-4
    22 sg:pub.10.1186/s12864-016-3397-4
    23 https://app.dimensions.ai/details/publication/pub.1074647594
    24 https://doi.org/10.1016/j.biombioe.2013.11.014
    25 https://doi.org/10.1016/j.cell.2013.09.006
    26 https://doi.org/10.1056/nejm199008163230703
    27 https://doi.org/10.1080/07352689109382313
    28 https://doi.org/10.1093/bioinformatics/btg412
    29 https://doi.org/10.1093/bioinformatics/btm233
    30 https://doi.org/10.1093/bioinformatics/btm308
    31 https://doi.org/10.1104/pp.109.146282
    32 https://doi.org/10.1111/2041-210x.12067
    33 https://doi.org/10.1111/j.1365-294x.2005.02553.x
    34 https://doi.org/10.1111/j.1467-7652.2009.00408.x
    35 https://doi.org/10.1111/j.1467-985x.2010.00676_9.x
    36 https://doi.org/10.1111/j.1755-0998.2009.02591.x
    37 https://doi.org/10.1111/tpj.12755
    38 https://doi.org/10.1201/9780203908198.ch5
    39 https://doi.org/10.1371/journal.pone.0054985
    40 https://doi.org/10.1534/g3.114.013433
    41 https://doi.org/10.1590/s1415-47572013005000041
    42 https://doi.org/10.2135/cropsci1984.0011183x002400030020x
    43 https://doi.org/10.2135/cropsci1991.0011183x003100060027x
    44 https://doi.org/10.2135/cropsci1994.0011183x003400050001x
    45 https://doi.org/10.2135/cropsci1994.0011183x003400060019x
    46 https://doi.org/10.2135/cropsci2003.1858
    47 https://doi.org/10.2135/cropsci2003.4090
    48 https://doi.org/10.2135/cropsci2008.05.0287
    49 https://doi.org/10.2135/cropsci2009.06.0360
    50 https://doi.org/10.3389/fpls.2014.00244
    51 https://doi.org/10.3389/fpls.2017.01222
    52 schema:datePublished 2019-03
    53 schema:datePublishedReg 2019-03-01
    54 schema:description The nutritional value, flavor and stability of soybean oil are determined by its five dominant fatty acids: saturated palmitic and stearic, monounsaturated oleic, and polyunsaturated linoleic and linolenic acids. Identifying molecular markers or quantitative trait loci associated with these components has the potential to facilitate the development of improved varieties and thus improve soybean oil content and quality. In this study, we used the BARCSoySNP6K BeadChip array to conduct a genome analysis of diverse soybean accessions evaluated for 2 years under Brazilian field conditions. The results demonstrated high broad-sense heritability, suggesting that the soybean genotype panel could be useful for oil trait breeding programs. Moreover, the range of oil trait variation among the plant introductions (PIs) was superior to that among the Brazilian cultivars in this study, indicating that a PI population could be used to find genes controlling these traits. The genome analysis showed that the genetic structure of the soybean germplasm comprised two main genetic groups, and it revealed linkage disequilibrium decay of approximately 300 kb. A total of 19 single-nucleotide polymorphism (SNP) loci on ten different chromosomes significantly associated with palmitic acid, oleic acid and total oil contents were discovered. Analysis of the SNP annotations revealed enzymes associated with several oil-related physiological metabolisms. Loci and specific alleles in our soybean panel that contributed to lower palmitic acid contents and higher oleic acid and total oil contents were identified. Overall, this genome analysis confirmed previous findings and identified SNP markers that may be useful to rapidly improve oil traits in soybean.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree false
    58 schema:isPartOf N7e4f33a5281e411f8422f859909cd51e
    59 N8c431fdd7c6449a393d854a2962c4de1
    60 sg:journal.1028679
    61 schema:name Genome analysis to identify SNPs associated with oil content and fatty acid components in soybean
    62 schema:pagination 54
    63 schema:productId N632778cb7ca042aabcd3b8233b1f38c4
    64 N732264084b67420689f4b51c76df0bf1
    65 Nd583e032ab844dfeb70d096016935c68
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112227481
    67 https://doi.org/10.1007/s10681-019-2378-5
    68 schema:sdDatePublished 2019-04-11T11:46
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N896aab0430984f0d8e4a1b3b860c990c
    71 schema:url https://link.springer.com/10.1007%2Fs10681-019-2378-5
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N096894db610541faadfef1660bdba2ed schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    76 schema:familyName Vello
    77 schema:givenName N. A.
    78 rdf:type schema:Person
    79 N2f04021967ff4184955df6a9de51f84b schema:affiliation https://www.grid.ac/institutes/grid.452491.f
    80 schema:familyName Carvalho
    81 schema:givenName C. R. L.
    82 rdf:type schema:Person
    83 N346ca56f55724ea39885dc73b9216325 rdf:first N9b8b337f1a634eb99b9d83559d17b6dc
    84 rdf:rest N92c28b6cd1ae43a1ba21dd5c63d872fa
    85 N34dce9cddad94c31ad8958af27dd7675 rdf:first N096894db610541faadfef1660bdba2ed
    86 rdf:rest rdf:nil
    87 N632778cb7ca042aabcd3b8233b1f38c4 schema:name dimensions_id
    88 schema:value pub.1112227481
    89 rdf:type schema:PropertyValue
    90 N641677395d4e418eb9993def105b21e1 rdf:first N963cfd5468ee4273a85d688faa3fefa3
    91 rdf:rest Ncc251655f51c41a6bf27da6b4d8af356
    92 N6b317c46f0804ddc8ab1b513d602b534 schema:name CERES, UDESC, R. Cel. Fernandes Martins 270, 88790-000, Laguna, SC, Brazil
    93 rdf:type schema:Organization
    94 N732264084b67420689f4b51c76df0bf1 schema:name readcube_id
    95 schema:value 9f9603d8e4a5d5ec2bd783b724bcbb6a9fd1cf1a8b17f44d275580a97b38d01d
    96 rdf:type schema:PropertyValue
    97 N7e4f33a5281e411f8422f859909cd51e schema:volumeNumber 215
    98 rdf:type schema:PublicationVolume
    99 N896aab0430984f0d8e4a1b3b860c990c schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N8c431fdd7c6449a393d854a2962c4de1 schema:issueNumber 3
    102 rdf:type schema:PublicationIssue
    103 N92c28b6cd1ae43a1ba21dd5c63d872fa rdf:first N2f04021967ff4184955df6a9de51f84b
    104 rdf:rest N641677395d4e418eb9993def105b21e1
    105 N963cfd5468ee4273a85d688faa3fefa3 schema:affiliation N6b317c46f0804ddc8ab1b513d602b534
    106 schema:familyName Bajay
    107 schema:givenName M. M.
    108 rdf:type schema:Person
    109 N9ad30ab1990242168c78f2025f74eaac schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    110 schema:familyName Pinheiro
    111 schema:givenName J. B.
    112 rdf:type schema:Person
    113 N9b8b337f1a634eb99b9d83559d17b6dc schema:affiliation https://www.grid.ac/institutes/grid.411087.b
    114 schema:familyName Priolli
    115 schema:givenName R. H. G.
    116 rdf:type schema:Person
    117 Ncc251655f51c41a6bf27da6b4d8af356 rdf:first N9ad30ab1990242168c78f2025f74eaac
    118 rdf:rest N34dce9cddad94c31ad8958af27dd7675
    119 Nd583e032ab844dfeb70d096016935c68 schema:name doi
    120 schema:value 10.1007/s10681-019-2378-5
    121 rdf:type schema:PropertyValue
    122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Biological Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Genetics
    127 rdf:type schema:DefinedTerm
    128 sg:grant.4486546 http://pending.schema.org/fundedItem sg:pub.10.1007/s10681-019-2378-5
    129 rdf:type schema:MonetaryGrant
    130 sg:grant.6457487 http://pending.schema.org/fundedItem sg:pub.10.1007/s10681-019-2378-5
    131 rdf:type schema:MonetaryGrant
    132 sg:journal.1028679 schema:issn 0014-2336
    133 1573-5060
    134 schema:name Euphytica
    135 rdf:type schema:Periodical
    136 sg:pub.10.1007/bf02637690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020378783
    137 https://doi.org/10.1007/bf02637690
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s00122-002-1086-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007474468
    140 https://doi.org/10.1007/s00122-002-1086-y
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s00122-008-0825-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044326136
    143 https://doi.org/10.1007/s00122-008-0825-0
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s00438-017-1345-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1090673829
    146 https://doi.org/10.1007/s00438-017-1345-x
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10681-006-9179-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004973071
    149 https://doi.org/10.1007/s10681-006-9179-3
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10681-011-0524-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037571943
    152 https://doi.org/10.1007/s10681-011-0524-9
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10681-014-1264-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005238931
    155 https://doi.org/10.1007/s10681-014-1264-4
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10681-017-1966-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090668594
    158 https://doi.org/10.1007/s10681-017-1966-5
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11746-004-1027-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038195342
    161 https://doi.org/10.1007/s11746-004-1027-z
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s12686-011-9548-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160842
    164 https://doi.org/10.1007/s12686-011-9548-7
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s12892-017-0020-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099734907
    167 https://doi.org/10.1007/s12892-017-0020-0
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/ng.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017784241
    170 https://doi.org/10.1038/ng.546
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nrg2612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035008603
    173 https://doi.org/10.1038/nrg2612
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/srep20728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031421593
    176 https://doi.org/10.1038/srep20728
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1186/1471-2156-12-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035204266
    179 https://doi.org/10.1186/1471-2156-12-12
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1186/1471-2164-15-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023623483
    182 https://doi.org/10.1186/1471-2164-15-1
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1186/s12864-015-1811-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005958078
    185 https://doi.org/10.1186/s12864-015-1811-y
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1186/s12864-015-2049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033042123
    188 https://doi.org/10.1186/s12864-015-2049-4
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/s12864-016-3397-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040898912
    191 https://doi.org/10.1186/s12864-016-3397-4
    192 rdf:type schema:CreativeWork
    193 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
    194 https://doi.org/10.1016/j.biombioe.2013.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010774716
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.cell.2013.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041185259
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1056/nejm199008163230703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700438
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1080/07352689109382313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033477808
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1093/bioinformatics/btg412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607942
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1093/bioinformatics/btm233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002660002
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1093/bioinformatics/btm308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028217957
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1104/pp.109.146282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034872812
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1111/2041-210x.12067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048231221
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1111/j.1365-294x.2005.02553.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045105386
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1111/j.1467-7652.2009.00408.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041007737
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1111/j.1467-985x.2010.00676_9.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053380586
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1111/j.1755-0998.2009.02591.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001719382
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1111/tpj.12755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004354614
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1201/9780203908198.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024132889
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1371/journal.pone.0054985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027370572
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1534/g3.114.013433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003963807
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1590/s1415-47572013005000041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045950925
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.2135/cropsci1984.0011183x002400030020x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069020082
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.2135/cropsci1991.0011183x003100060027x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069023152
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.2135/cropsci1994.0011183x003400050001x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069024316
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.2135/cropsci1994.0011183x003400060019x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069024418
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.2135/cropsci2003.1858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028155
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.2135/cropsci2003.4090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028286
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.2135/cropsci2008.05.0287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030656
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.2135/cropsci2009.06.0360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030986
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.3389/fpls.2014.00244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042664942
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.3389/fpls.2017.01222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090609535
    249 rdf:type schema:CreativeWork
    250 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
    251 schema:name Department of Genetics, ESALQ, USP, Av Padua Dias 11, 13400-970, Piracicaba, SP, Brazil
    252 rdf:type schema:Organization
    253 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
    254 schema:name FIFO, UNISANTA, R. Oswaldo Cruz 266, 11045-970, Santos, SP, Brazil
    255 NEPA, UNICAMP, Av. Albert Einstein 291, 13083-852, Campinas, SP, Brazil
    256 rdf:type schema:Organization
    257 https://www.grid.ac/institutes/grid.452491.f schema:alternateName Agência Paulista de Tecnologia dos Agronegócios
    258 schema:name IAC, CPDRGV, Av. Barao de Itapura 1481, 13001-970, Campinas, SP, Brazil
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...