Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-22

AUTHORS

Sarah Fröbel, Jens Dudenhöffer, Reinhard Töpfer, Eva Zyprian

ABSTRACT

The oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni causes downy mildew, one of the most devastating diseases of grapevine (Vitis vinifera L.). Traditional European grapevine cultivars are highly susceptible to this obligate biotrophic pathogen. Large amounts of fungicides are necessary to protect the grapevine plants and secure harvest. This strong requirement for protective chemicals conflicts with the modern demand for sustainability in agriculture. A significant reduction of chemical protection is possible by generating novel robust grapevine cultivars through resistance breeding. Current grapevine breeding utilizes marker-assisted genetic selection. The aim is to combine diverse resistance loci for durable resistance. Markers tagging various resistance loci were elaborated during the last 10 years. However, knowledge about the conveyed defense mechanisms is still sparse but would be essential to optimize the combination of resistance loci. Asian Vitis amurensis accessions carry resistance against downy mildew e.g. in the Rpv10 locus. This locus has been introgressed into the resistant grapevine cultivar ‘Solaris’ and was genetically mapped to chromosome nine. To understand its mode of action in early defense reactions we performed a comparative RNA sequencing analysis after pathogen challenge of Rpv10-carriers, Rpv10-carriers containing additionally the resistance locus Rpv3 from American Vitis sp. origin and non-Rpv carriers. This study indicated comprehensive transcriptional re-programming and a large number of differentially expressed genes. The data indicates that the difference between resistant and susceptible grapevines relies in the increased amount of responsive genes and the efficiency of early signal transduction. This results in the fast activation of large gene clusters encoding phenylalanine ammonium lyase and stilbene synthase on chromosome 16. More... »

PAGES

28

References to SciGraph publications

  • 2010-02-18. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species in BMC GENOMICS
  • 2011-07-07. Defence responses in Rpv3-dependent resistance to grapevine downy mildew in PLANTA
  • 2007-09-30. A translocation signal for delivery of oomycete effector proteins into host plant cells in NATURE
  • 2011-09-21. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine in THEORETICAL AND APPLIED GENETICS
  • 2011-09-27. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance in THEORETICAL AND APPLIED GENETICS
  • 1988-07. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley in MOLECULAR GENETICS AND GENOMICS
  • 2012-01-14. Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2013-06-21. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests in TRANSGENIC RESEARCH
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2006-11. The plant immune system in NATURE
  • 2010-07-15. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety in BMC PLANT BIOLOGY
  • 2017-04-18. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism in SCIENTIFIC REPORTS
  • 2001-06-14. Plant pathogens and integrated defence responses to infection in NATURE
  • 2003-10-22. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine in THEORETICAL AND APPLIED GENETICS
  • 2013-03-07. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape in BMC PLANT BIOLOGY
  • 2009-10-11. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site in THEORETICAL AND APPLIED GENETICS
  • 2004-12. Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms in MOLECULAR BREEDING
  • 2007-05-05. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L) in MOLECULAR BREEDING
  • 2011-08-12. Resistance to Plasmopara viticolain a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses in BMC PLANT BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z

    DOI

    http://dx.doi.org/10.1007/s10681-019-2355-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111606796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fr\u00f6bel", 
            "givenName": "Sarah", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dudenh\u00f6ffer", 
            "givenName": "Jens", 
            "id": "sg:person.016504312415.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504312415.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "T\u00f6pfer", 
            "givenName": "Reinhard", 
            "id": "sg:person.0744241567.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744241567.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zyprian", 
            "givenName": "Eva", 
            "id": "sg:person.0676126367.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676126367.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039464463", 
              "https://doi.org/10.1038/nature05286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035738727", 
              "https://doi.org/10.1186/1471-2164-11-117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-012-0261-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049972498", 
              "https://doi.org/10.1007/s10142-012-0261-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-007-9097-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009344109", 
              "https://doi.org/10.1007/s11032-007-9097-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep46553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084896962", 
              "https://doi.org/10.1038/srep46553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1445-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049116493", 
              "https://doi.org/10.1007/s00122-003-1445-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-013-9725-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006049902", 
              "https://doi.org/10.1007/s11248-013-9725-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1695-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049424694", 
              "https://doi.org/10.1007/s00122-011-1695-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-004-0261-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002210556", 
              "https://doi.org/10.1007/s11032-004-0261-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35081161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010228120", 
              "https://doi.org/10.1038/35081161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1167-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020261521", 
              "https://doi.org/10.1007/s00122-009-1167-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-13-39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052013437", 
              "https://doi.org/10.1186/1471-2229-13-39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-10-147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011942255", 
              "https://doi.org/10.1186/1471-2229-10-147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-11-114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025791173", 
              "https://doi.org/10.1186/1471-2229-11-114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015554783", 
              "https://doi.org/10.1038/nature06203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00333403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021002164", 
              "https://doi.org/10.1007/bf00333403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-011-1461-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049700745", 
              "https://doi.org/10.1007/s00425-011-1461-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1703-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050112215", 
              "https://doi.org/10.1007/s00122-011-1703-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-22", 
        "datePublishedReg": "2019-01-22", 
        "description": "The oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni causes downy mildew, one of the most devastating diseases of grapevine (Vitis vinifera L.). Traditional European grapevine cultivars are highly susceptible to this obligate biotrophic pathogen. Large amounts of fungicides are necessary to protect the grapevine plants and secure harvest. This strong requirement for protective chemicals conflicts with the modern demand for sustainability in agriculture. A significant reduction of chemical protection is possible by generating novel robust grapevine cultivars through resistance breeding. Current grapevine breeding utilizes marker-assisted genetic selection. The aim is to combine diverse resistance loci for durable resistance. Markers tagging various resistance loci were elaborated during the last 10\u00a0years. However, knowledge about the conveyed defense mechanisms is still sparse but would be essential to optimize the combination of resistance loci. Asian Vitis amurensis accessions carry resistance against downy mildew e.g. in the Rpv10 locus. This locus has been introgressed into the resistant grapevine cultivar \u2018Solaris\u2019 and was genetically mapped to chromosome nine. To understand its mode of action in early defense reactions we performed a comparative RNA sequencing analysis after pathogen challenge of Rpv10-carriers, Rpv10-carriers containing additionally the resistance locus Rpv3 from American Vitis sp. origin and non-Rpv carriers. This study indicated comprehensive transcriptional re-programming and a large number of differentially expressed genes. The data indicates that the difference between resistant and susceptible grapevines relies in the increased amount of responsive genes and the efficiency of early signal transduction. This results in the fast activation of large gene clusters encoding phenylalanine ammonium lyase and stilbene synthase on chromosome 16.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10681-019-2355-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028679", 
            "issn": [
              "0014-2336", 
              "1573-5060"
            ], 
            "name": "Euphytica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "215"
          }
        ], 
        "keywords": [
          "resistance loci", 
          "grapevine cultivars", 
          "resistant grapevine cultivars", 
          "phenylalanine ammonium lyase", 
          "Plasmopara viticola (de Bary) Berl", 
          "obligate biotrophic pathogen", 
          "early defence reactions", 
          "grapevine breeding", 
          "resistance breeding", 
          "durable resistance", 
          "downy mildew", 
          "comparative RNA sequencing analysis", 
          "grapevine plants", 
          "genetic selection", 
          "biotrophic pathogens", 
          "Vitis sp", 
          "cultivars", 
          "De Toni", 
          "pathogen challenge", 
          "stilbene synthase", 
          "chemical protection", 
          "devastating disease", 
          "breeding", 
          "grapevine", 
          "responsive genes", 
          "defense reactions", 
          "large gene cluster", 
          "mode of action", 
          "loci", 
          "RNA sequencing analysis", 
          "defense mechanisms", 
          "Rpv3", 
          "mildew", 
          "harvest", 
          "agriculture", 
          "gene cluster", 
          "accessions", 
          "early signal transduction", 
          "fungicides", 
          "signal transduction", 
          "Berl", 
          "plants", 
          "resistance", 
          "Toni", 
          "sustainability", 
          "chromosome 16", 
          "sequencing analysis", 
          "pathogens", 
          "genes", 
          "selection", 
          "large amount", 
          "significant reduction", 
          "Solaris", 
          "amount", 
          "fast activation", 
          "sp", 
          "demand", 
          "transduction", 
          "protection", 
          "large number", 
          "lyase", 
          "efficiency", 
          "defense", 
          "markers", 
          "synthase", 
          "years", 
          "activation", 
          "reduction", 
          "combination", 
          "requirements", 
          "differences", 
          "disease", 
          "number", 
          "mechanism", 
          "challenges", 
          "relies", 
          "strong requirement", 
          "knowledge", 
          "origin", 
          "e.", 
          "analysis", 
          "clusters", 
          "study", 
          "aim", 
          "data", 
          "action", 
          "conflict", 
          "reaction", 
          "mode", 
          "carriers", 
          "modern demands"
        ], 
        "name": "Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10", 
        "pagination": "28", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111606796"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10681-019-2355-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10681-019-2355-z", 
          "https://app.dimensions.ai/details/publication/pub.1111606796"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_813.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10681-019-2355-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      22 PREDICATES      135 URIs      108 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10681-019-2355-z schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N1edb94ec9f0249de823416b2696d7796
    4 schema:citation sg:pub.10.1007/bf00333403
    5 sg:pub.10.1007/s00122-003-1445-3
    6 sg:pub.10.1007/s00122-009-1167-2
    7 sg:pub.10.1007/s00122-011-1695-4
    8 sg:pub.10.1007/s00122-011-1703-8
    9 sg:pub.10.1007/s00425-011-1461-5
    10 sg:pub.10.1007/s10142-012-0261-8
    11 sg:pub.10.1007/s11032-004-0261-z
    12 sg:pub.10.1007/s11032-007-9097-7
    13 sg:pub.10.1007/s11248-013-9725-4
    14 sg:pub.10.1038/35081161
    15 sg:pub.10.1038/nature05286
    16 sg:pub.10.1038/nature06203
    17 sg:pub.10.1038/nmeth.1226
    18 sg:pub.10.1038/srep46553
    19 sg:pub.10.1186/1471-2164-11-117
    20 sg:pub.10.1186/1471-2229-10-147
    21 sg:pub.10.1186/1471-2229-11-114
    22 sg:pub.10.1186/1471-2229-13-39
    23 schema:datePublished 2019-01-22
    24 schema:datePublishedReg 2019-01-22
    25 schema:description The oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni causes downy mildew, one of the most devastating diseases of grapevine (Vitis vinifera L.). Traditional European grapevine cultivars are highly susceptible to this obligate biotrophic pathogen. Large amounts of fungicides are necessary to protect the grapevine plants and secure harvest. This strong requirement for protective chemicals conflicts with the modern demand for sustainability in agriculture. A significant reduction of chemical protection is possible by generating novel robust grapevine cultivars through resistance breeding. Current grapevine breeding utilizes marker-assisted genetic selection. The aim is to combine diverse resistance loci for durable resistance. Markers tagging various resistance loci were elaborated during the last 10 years. However, knowledge about the conveyed defense mechanisms is still sparse but would be essential to optimize the combination of resistance loci. Asian Vitis amurensis accessions carry resistance against downy mildew e.g. in the Rpv10 locus. This locus has been introgressed into the resistant grapevine cultivar ‘Solaris’ and was genetically mapped to chromosome nine. To understand its mode of action in early defense reactions we performed a comparative RNA sequencing analysis after pathogen challenge of Rpv10-carriers, Rpv10-carriers containing additionally the resistance locus Rpv3 from American Vitis sp. origin and non-Rpv carriers. This study indicated comprehensive transcriptional re-programming and a large number of differentially expressed genes. The data indicates that the difference between resistant and susceptible grapevines relies in the increased amount of responsive genes and the efficiency of early signal transduction. This results in the fast activation of large gene clusters encoding phenylalanine ammonium lyase and stilbene synthase on chromosome 16.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N627b91583b1c47c3bfe928e92cd82aab
    30 N65aaf6e4123c4205ad9f29f917046e08
    31 sg:journal.1028679
    32 schema:keywords Berl
    33 De Toni
    34 Plasmopara viticola (de Bary) Berl
    35 RNA sequencing analysis
    36 Rpv3
    37 Solaris
    38 Toni
    39 Vitis sp
    40 accessions
    41 action
    42 activation
    43 agriculture
    44 aim
    45 amount
    46 analysis
    47 biotrophic pathogens
    48 breeding
    49 carriers
    50 challenges
    51 chemical protection
    52 chromosome 16
    53 clusters
    54 combination
    55 comparative RNA sequencing analysis
    56 conflict
    57 cultivars
    58 data
    59 defense
    60 defense mechanisms
    61 defense reactions
    62 demand
    63 devastating disease
    64 differences
    65 disease
    66 downy mildew
    67 durable resistance
    68 e.
    69 early defence reactions
    70 early signal transduction
    71 efficiency
    72 fast activation
    73 fungicides
    74 gene cluster
    75 genes
    76 genetic selection
    77 grapevine
    78 grapevine breeding
    79 grapevine cultivars
    80 grapevine plants
    81 harvest
    82 knowledge
    83 large amount
    84 large gene cluster
    85 large number
    86 loci
    87 lyase
    88 markers
    89 mechanism
    90 mildew
    91 mode
    92 mode of action
    93 modern demands
    94 number
    95 obligate biotrophic pathogen
    96 origin
    97 pathogen challenge
    98 pathogens
    99 phenylalanine ammonium lyase
    100 plants
    101 protection
    102 reaction
    103 reduction
    104 relies
    105 requirements
    106 resistance
    107 resistance breeding
    108 resistance loci
    109 resistant grapevine cultivars
    110 responsive genes
    111 selection
    112 sequencing analysis
    113 signal transduction
    114 significant reduction
    115 sp
    116 stilbene synthase
    117 strong requirement
    118 study
    119 sustainability
    120 synthase
    121 transduction
    122 years
    123 schema:name Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10
    124 schema:pagination 28
    125 schema:productId N5ea141ce3b174788a72765294c712e0f
    126 N6d0382bbdf80413ba24edf303fb7dd94
    127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111606796
    128 https://doi.org/10.1007/s10681-019-2355-z
    129 schema:sdDatePublished 2022-05-20T07:35
    130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    131 schema:sdPublisher N106de09b569249809161d2ce45906889
    132 schema:url https://doi.org/10.1007/s10681-019-2355-z
    133 sgo:license sg:explorer/license/
    134 sgo:sdDataset articles
    135 rdf:type schema:ScholarlyArticle
    136 N106de09b569249809161d2ce45906889 schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 N1edb94ec9f0249de823416b2696d7796 rdf:first N342635f2331c4ebf83732e3e9e40040a
    139 rdf:rest Nf8774ef546f74e29a6476db23886bfb6
    140 N342635f2331c4ebf83732e3e9e40040a schema:affiliation grid-institutes:None
    141 schema:familyName Fröbel
    142 schema:givenName Sarah
    143 rdf:type schema:Person
    144 N5ea141ce3b174788a72765294c712e0f schema:name dimensions_id
    145 schema:value pub.1111606796
    146 rdf:type schema:PropertyValue
    147 N627b91583b1c47c3bfe928e92cd82aab schema:volumeNumber 215
    148 rdf:type schema:PublicationVolume
    149 N65aaf6e4123c4205ad9f29f917046e08 schema:issueNumber 2
    150 rdf:type schema:PublicationIssue
    151 N6d0382bbdf80413ba24edf303fb7dd94 schema:name doi
    152 schema:value 10.1007/s10681-019-2355-z
    153 rdf:type schema:PropertyValue
    154 N865c77e2366048c38dfbe1a719a16955 rdf:first sg:person.0676126367.38
    155 rdf:rest rdf:nil
    156 Nd4ec62744de54bb08e03d3e6eacb3880 rdf:first sg:person.0744241567.80
    157 rdf:rest N865c77e2366048c38dfbe1a719a16955
    158 Nf8774ef546f74e29a6476db23886bfb6 rdf:first sg:person.016504312415.61
    159 rdf:rest Nd4ec62744de54bb08e03d3e6eacb3880
    160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Biological Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Genetics
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1028679 schema:issn 0014-2336
    167 1573-5060
    168 schema:name Euphytica
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.016504312415.61 schema:affiliation grid-institutes:None
    172 schema:familyName Dudenhöffer
    173 schema:givenName Jens
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504312415.61
    175 rdf:type schema:Person
    176 sg:person.0676126367.38 schema:affiliation grid-institutes:None
    177 schema:familyName Zyprian
    178 schema:givenName Eva
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676126367.38
    180 rdf:type schema:Person
    181 sg:person.0744241567.80 schema:affiliation grid-institutes:None
    182 schema:familyName Töpfer
    183 schema:givenName Reinhard
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744241567.80
    185 rdf:type schema:Person
    186 sg:pub.10.1007/bf00333403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021002164
    187 https://doi.org/10.1007/bf00333403
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00122-003-1445-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049116493
    190 https://doi.org/10.1007/s00122-003-1445-3
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00122-009-1167-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020261521
    193 https://doi.org/10.1007/s00122-009-1167-2
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00122-011-1695-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049424694
    196 https://doi.org/10.1007/s00122-011-1695-4
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00122-011-1703-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050112215
    199 https://doi.org/10.1007/s00122-011-1703-8
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00425-011-1461-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049700745
    202 https://doi.org/10.1007/s00425-011-1461-5
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s10142-012-0261-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049972498
    205 https://doi.org/10.1007/s10142-012-0261-8
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11032-004-0261-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002210556
    208 https://doi.org/10.1007/s11032-004-0261-z
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11032-007-9097-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009344109
    211 https://doi.org/10.1007/s11032-007-9097-7
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11248-013-9725-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006049902
    214 https://doi.org/10.1007/s11248-013-9725-4
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/35081161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010228120
    217 https://doi.org/10.1038/35081161
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nature05286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039464463
    220 https://doi.org/10.1038/nature05286
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature06203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015554783
    223 https://doi.org/10.1038/nature06203
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    226 https://doi.org/10.1038/nmeth.1226
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/srep46553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084896962
    229 https://doi.org/10.1038/srep46553
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/1471-2164-11-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035738727
    232 https://doi.org/10.1186/1471-2164-11-117
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/1471-2229-10-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011942255
    235 https://doi.org/10.1186/1471-2229-10-147
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/1471-2229-11-114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791173
    238 https://doi.org/10.1186/1471-2229-11-114
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/1471-2229-13-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052013437
    241 https://doi.org/10.1186/1471-2229-13-39
    242 rdf:type schema:CreativeWork
    243 grid-institutes:None schema:alternateName Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany
    244 schema:name Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...