Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-22

AUTHORS

Sarah Fröbel, Jens Dudenhöffer, Reinhard Töpfer, Eva Zyprian

ABSTRACT

The oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni causes downy mildew, one of the most devastating diseases of grapevine (Vitis vinifera L.). Traditional European grapevine cultivars are highly susceptible to this obligate biotrophic pathogen. Large amounts of fungicides are necessary to protect the grapevine plants and secure harvest. This strong requirement for protective chemicals conflicts with the modern demand for sustainability in agriculture. A significant reduction of chemical protection is possible by generating novel robust grapevine cultivars through resistance breeding. Current grapevine breeding utilizes marker-assisted genetic selection. The aim is to combine diverse resistance loci for durable resistance. Markers tagging various resistance loci were elaborated during the last 10 years. However, knowledge about the conveyed defense mechanisms is still sparse but would be essential to optimize the combination of resistance loci. Asian Vitis amurensis accessions carry resistance against downy mildew e.g. in the Rpv10 locus. This locus has been introgressed into the resistant grapevine cultivar ‘Solaris’ and was genetically mapped to chromosome nine. To understand its mode of action in early defense reactions we performed a comparative RNA sequencing analysis after pathogen challenge of Rpv10-carriers, Rpv10-carriers containing additionally the resistance locus Rpv3 from American Vitis sp. origin and non-Rpv carriers. This study indicated comprehensive transcriptional re-programming and a large number of differentially expressed genes. The data indicates that the difference between resistant and susceptible grapevines relies in the increased amount of responsive genes and the efficiency of early signal transduction. This results in the fast activation of large gene clusters encoding phenylalanine ammonium lyase and stilbene synthase on chromosome 16. More... »

PAGES

28

References to SciGraph publications

  • 2013-06-21. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests in TRANSGENIC RESEARCH
  • 2011-07-07. Defence responses in Rpv3-dependent resistance to grapevine downy mildew in PLANTA
  • 2007-09-30. A translocation signal for delivery of oomycete effector proteins into host plant cells in NATURE
  • 2011-08-12. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses in BMC PLANT BIOLOGY
  • 2010-02-18. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species in BMC GENOMICS
  • 1988-07. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley in MOLECULAR GENETICS AND GENOMICS
  • 2012-01-14. Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2006-11. The plant immune system in NATURE
  • 2010-07-15. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety in BMC PLANT BIOLOGY
  • 2017-04-18. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism in SCIENTIFIC REPORTS
  • 2001-06. Plant pathogens and integrated defence responses to infection in NATURE
  • 2003-10-22. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine in THEORETICAL AND APPLIED GENETICS
  • 2011-09-27. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance in THEORETICAL AND APPLIED GENETICS
  • 2013-03-07. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape in BMC PLANT BIOLOGY
  • 2009-10-11. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site in THEORETICAL AND APPLIED GENETICS
  • 2004-12. Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms in MOLECULAR BREEDING
  • 2007-05-05. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L) in MOLECULAR BREEDING
  • 2011-09-21. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z

    DOI

    http://dx.doi.org/10.1007/s10681-019-2355-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111606796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fr\u00f6bel", 
            "givenName": "Sarah", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dudenh\u00f6ffer", 
            "givenName": "Jens", 
            "id": "sg:person.016504312415.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504312415.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "T\u00f6pfer", 
            "givenName": "Reinhard", 
            "id": "sg:person.0744241567.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744241567.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Julius K\u00fchn-Institut \u2013 Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zyprian", 
            "givenName": "Eva", 
            "id": "sg:person.0676126367.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676126367.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039464463", 
              "https://doi.org/10.1038/nature05286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035738727", 
              "https://doi.org/10.1186/1471-2164-11-117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015554783", 
              "https://doi.org/10.1038/nature06203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-004-0261-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002210556", 
              "https://doi.org/10.1007/s11032-004-0261-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-012-0261-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049972498", 
              "https://doi.org/10.1007/s10142-012-0261-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep46553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084896962", 
              "https://doi.org/10.1038/srep46553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11248-013-9725-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006049902", 
              "https://doi.org/10.1007/s11248-013-9725-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00333403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021002164", 
              "https://doi.org/10.1007/bf00333403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-011-1461-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049700745", 
              "https://doi.org/10.1007/s00425-011-1461-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1445-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049116493", 
              "https://doi.org/10.1007/s00122-003-1445-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1703-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050112215", 
              "https://doi.org/10.1007/s00122-011-1703-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-11-114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025791173", 
              "https://doi.org/10.1186/1471-2229-11-114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1167-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020261521", 
              "https://doi.org/10.1007/s00122-009-1167-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-13-39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052013437", 
              "https://doi.org/10.1186/1471-2229-13-39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35081161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010228120", 
              "https://doi.org/10.1038/35081161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-10-147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011942255", 
              "https://doi.org/10.1186/1471-2229-10-147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1695-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049424694", 
              "https://doi.org/10.1007/s00122-011-1695-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-007-9097-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009344109", 
              "https://doi.org/10.1007/s11032-007-9097-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-22", 
        "datePublishedReg": "2019-01-22", 
        "description": "The oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni causes downy mildew, one of the most devastating diseases of grapevine (Vitis vinifera L.). Traditional European grapevine cultivars are highly susceptible to this obligate biotrophic pathogen. Large amounts of fungicides are necessary to protect the grapevine plants and secure harvest. This strong requirement for protective chemicals conflicts with the modern demand for sustainability in agriculture. A significant reduction of chemical protection is possible by generating novel robust grapevine cultivars through resistance breeding. Current grapevine breeding utilizes marker-assisted genetic selection. The aim is to combine diverse resistance loci for durable resistance. Markers tagging various resistance loci were elaborated during the last 10\u00a0years. However, knowledge about the conveyed defense mechanisms is still sparse but would be essential to optimize the combination of resistance loci. Asian Vitis amurensis accessions carry resistance against downy mildew e.g. in the Rpv10 locus. This locus has been introgressed into the resistant grapevine cultivar \u2018Solaris\u2019 and was genetically mapped to chromosome nine. To understand its mode of action in early defense reactions we performed a comparative RNA sequencing analysis after pathogen challenge of Rpv10-carriers, Rpv10-carriers containing additionally the resistance locus Rpv3 from American Vitis sp. origin and non-Rpv carriers. This study indicated comprehensive transcriptional re-programming and a large number of differentially expressed genes. The data indicates that the difference between resistant and susceptible grapevines relies in the increased amount of responsive genes and the efficiency of early signal transduction. This results in the fast activation of large gene clusters encoding phenylalanine ammonium lyase and stilbene synthase on chromosome 16.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10681-019-2355-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028679", 
            "issn": [
              "0014-2336", 
              "1573-5060"
            ], 
            "name": "Euphytica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "215"
          }
        ], 
        "keywords": [
          "resistance loci", 
          "grapevine cultivars", 
          "resistant grapevine cultivars", 
          "phenylalanine ammonium lyase", 
          "Plasmopara viticola (de Bary) Berl", 
          "obligate biotrophic pathogen", 
          "early defence reactions", 
          "grapevine breeding", 
          "resistance breeding", 
          "durable resistance", 
          "downy mildew", 
          "comparative RNA sequencing analysis", 
          "grapevine plants", 
          "genetic selection", 
          "biotrophic pathogens", 
          "Vitis sp", 
          "cultivars", 
          "De Toni", 
          "pathogen challenge", 
          "stilbene synthase", 
          "chemical protection", 
          "devastating disease", 
          "breeding", 
          "grapevine", 
          "responsive genes", 
          "defense reactions", 
          "large gene cluster", 
          "mode of action", 
          "loci", 
          "RNA sequencing analysis", 
          "defense mechanisms", 
          "Rpv3", 
          "mildew", 
          "harvest", 
          "agriculture", 
          "gene cluster", 
          "accessions", 
          "early signal transduction", 
          "fungicides", 
          "signal transduction", 
          "Berl", 
          "plants", 
          "resistance", 
          "Toni", 
          "sustainability", 
          "chromosome 16", 
          "sequencing analysis", 
          "pathogens", 
          "genes", 
          "selection", 
          "large amount", 
          "significant reduction", 
          "Solaris", 
          "amount", 
          "fast activation", 
          "sp", 
          "demand", 
          "transduction", 
          "protection", 
          "large number", 
          "lyase", 
          "efficiency", 
          "defense", 
          "markers", 
          "synthase", 
          "years", 
          "activation", 
          "reduction", 
          "combination", 
          "requirements", 
          "differences", 
          "disease", 
          "number", 
          "mechanism", 
          "challenges", 
          "relies", 
          "strong requirement", 
          "knowledge", 
          "origin", 
          "e.", 
          "analysis", 
          "clusters", 
          "study", 
          "aim", 
          "data", 
          "action", 
          "conflict", 
          "reaction", 
          "mode", 
          "carriers", 
          "modern demands", 
          "oomycete Plasmopara viticola (Berk. & Curt.) Berl", 
          "viticola (Berk. & Curt.) Berl", 
          "Traditional European grapevine cultivars", 
          "European grapevine cultivars", 
          "secure harvest", 
          "protective chemicals conflicts", 
          "chemicals conflicts", 
          "novel robust grapevine cultivars", 
          "robust grapevine cultivars", 
          "Current grapevine breeding", 
          "marker-assisted genetic selection", 
          "diverse resistance loci", 
          "conveyed defense mechanisms", 
          "Asian Vitis amurensis accessions", 
          "Vitis amurensis accessions", 
          "amurensis accessions", 
          "downy mildew e.", 
          "mildew e.", 
          "Rpv10 locus", 
          "Rpv10-carriers", 
          "resistance locus Rpv3", 
          "locus Rpv3", 
          "American Vitis sp", 
          "non-Rpv carriers", 
          "susceptible grapevines relies", 
          "grapevines relies", 
          "ammonium lyase", 
          "early downy mildew (Plasmopara viticola) defense", 
          "downy mildew (Plasmopara viticola) defense", 
          "mildew (Plasmopara viticola) defense", 
          "Asian resistance locus Rpv10", 
          "resistance locus Rpv10", 
          "locus Rpv10", 
          "Rpv10"
        ], 
        "name": "Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10", 
        "pagination": "28", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111606796"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10681-019-2355-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10681-019-2355-z", 
          "https://app.dimensions.ai/details/publication/pub.1111606796"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_795.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10681-019-2355-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10681-019-2355-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    279 TRIPLES      22 PREDICATES      169 URIs      142 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10681-019-2355-z schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nb1e96d5265ed4f8695fb6a0bf3f2939f
    4 schema:citation sg:pub.10.1007/bf00333403
    5 sg:pub.10.1007/s00122-003-1445-3
    6 sg:pub.10.1007/s00122-009-1167-2
    7 sg:pub.10.1007/s00122-011-1695-4
    8 sg:pub.10.1007/s00122-011-1703-8
    9 sg:pub.10.1007/s00425-011-1461-5
    10 sg:pub.10.1007/s10142-012-0261-8
    11 sg:pub.10.1007/s11032-004-0261-z
    12 sg:pub.10.1007/s11032-007-9097-7
    13 sg:pub.10.1007/s11248-013-9725-4
    14 sg:pub.10.1038/35081161
    15 sg:pub.10.1038/nature05286
    16 sg:pub.10.1038/nature06203
    17 sg:pub.10.1038/nmeth.1226
    18 sg:pub.10.1038/srep46553
    19 sg:pub.10.1186/1471-2164-11-117
    20 sg:pub.10.1186/1471-2229-10-147
    21 sg:pub.10.1186/1471-2229-11-114
    22 sg:pub.10.1186/1471-2229-13-39
    23 schema:datePublished 2019-01-22
    24 schema:datePublishedReg 2019-01-22
    25 schema:description The oomycete Plasmopara viticola (Berk. & Curt.) Berl. & de Toni causes downy mildew, one of the most devastating diseases of grapevine (Vitis vinifera L.). Traditional European grapevine cultivars are highly susceptible to this obligate biotrophic pathogen. Large amounts of fungicides are necessary to protect the grapevine plants and secure harvest. This strong requirement for protective chemicals conflicts with the modern demand for sustainability in agriculture. A significant reduction of chemical protection is possible by generating novel robust grapevine cultivars through resistance breeding. Current grapevine breeding utilizes marker-assisted genetic selection. The aim is to combine diverse resistance loci for durable resistance. Markers tagging various resistance loci were elaborated during the last 10 years. However, knowledge about the conveyed defense mechanisms is still sparse but would be essential to optimize the combination of resistance loci. Asian Vitis amurensis accessions carry resistance against downy mildew e.g. in the Rpv10 locus. This locus has been introgressed into the resistant grapevine cultivar ‘Solaris’ and was genetically mapped to chromosome nine. To understand its mode of action in early defense reactions we performed a comparative RNA sequencing analysis after pathogen challenge of Rpv10-carriers, Rpv10-carriers containing additionally the resistance locus Rpv3 from American Vitis sp. origin and non-Rpv carriers. This study indicated comprehensive transcriptional re-programming and a large number of differentially expressed genes. The data indicates that the difference between resistant and susceptible grapevines relies in the increased amount of responsive genes and the efficiency of early signal transduction. This results in the fast activation of large gene clusters encoding phenylalanine ammonium lyase and stilbene synthase on chromosome 16.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N50784c21a33b4eb1ac9ecbf578df2fa5
    30 Ne9aa4fd7f8df469dbd8f5b308ceec5a0
    31 sg:journal.1028679
    32 schema:keywords American Vitis sp
    33 Asian Vitis amurensis accessions
    34 Asian resistance locus Rpv10
    35 Berl
    36 Current grapevine breeding
    37 De Toni
    38 European grapevine cultivars
    39 Plasmopara viticola (de Bary) Berl
    40 RNA sequencing analysis
    41 Rpv10
    42 Rpv10 locus
    43 Rpv10-carriers
    44 Rpv3
    45 Solaris
    46 Toni
    47 Traditional European grapevine cultivars
    48 Vitis amurensis accessions
    49 Vitis sp
    50 accessions
    51 action
    52 activation
    53 agriculture
    54 aim
    55 ammonium lyase
    56 amount
    57 amurensis accessions
    58 analysis
    59 biotrophic pathogens
    60 breeding
    61 carriers
    62 challenges
    63 chemical protection
    64 chemicals conflicts
    65 chromosome 16
    66 clusters
    67 combination
    68 comparative RNA sequencing analysis
    69 conflict
    70 conveyed defense mechanisms
    71 cultivars
    72 data
    73 defense
    74 defense mechanisms
    75 defense reactions
    76 demand
    77 devastating disease
    78 differences
    79 disease
    80 diverse resistance loci
    81 downy mildew
    82 downy mildew (Plasmopara viticola) defense
    83 downy mildew e.
    84 durable resistance
    85 e.
    86 early defence reactions
    87 early downy mildew (Plasmopara viticola) defense
    88 early signal transduction
    89 efficiency
    90 fast activation
    91 fungicides
    92 gene cluster
    93 genes
    94 genetic selection
    95 grapevine
    96 grapevine breeding
    97 grapevine cultivars
    98 grapevine plants
    99 grapevines relies
    100 harvest
    101 knowledge
    102 large amount
    103 large gene cluster
    104 large number
    105 loci
    106 locus Rpv10
    107 locus Rpv3
    108 lyase
    109 marker-assisted genetic selection
    110 markers
    111 mechanism
    112 mildew
    113 mildew (Plasmopara viticola) defense
    114 mildew e.
    115 mode
    116 mode of action
    117 modern demands
    118 non-Rpv carriers
    119 novel robust grapevine cultivars
    120 number
    121 obligate biotrophic pathogen
    122 oomycete Plasmopara viticola (Berk. & Curt.) Berl
    123 origin
    124 pathogen challenge
    125 pathogens
    126 phenylalanine ammonium lyase
    127 plants
    128 protection
    129 protective chemicals conflicts
    130 reaction
    131 reduction
    132 relies
    133 requirements
    134 resistance
    135 resistance breeding
    136 resistance loci
    137 resistance locus Rpv10
    138 resistance locus Rpv3
    139 resistant grapevine cultivars
    140 responsive genes
    141 robust grapevine cultivars
    142 secure harvest
    143 selection
    144 sequencing analysis
    145 signal transduction
    146 significant reduction
    147 sp
    148 stilbene synthase
    149 strong requirement
    150 study
    151 susceptible grapevines relies
    152 sustainability
    153 synthase
    154 transduction
    155 viticola (Berk. & Curt.) Berl
    156 years
    157 schema:name Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10
    158 schema:pagination 28
    159 schema:productId N9bcc2d6f9f944437a0812bd7ac2d13f8
    160 Nf276a466ae4341829eb2767c2d3fae5c
    161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111606796
    162 https://doi.org/10.1007/s10681-019-2355-z
    163 schema:sdDatePublished 2022-01-01T18:51
    164 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    165 schema:sdPublisher N29c0323919b64187a707b601c5789e82
    166 schema:url https://doi.org/10.1007/s10681-019-2355-z
    167 sgo:license sg:explorer/license/
    168 sgo:sdDataset articles
    169 rdf:type schema:ScholarlyArticle
    170 N11f37742d6334920a96534b5edf76126 rdf:first sg:person.016504312415.61
    171 rdf:rest Na8a190689385457f98ff42a9713d9648
    172 N29c0323919b64187a707b601c5789e82 schema:name Springer Nature - SN SciGraph project
    173 rdf:type schema:Organization
    174 N50784c21a33b4eb1ac9ecbf578df2fa5 schema:volumeNumber 215
    175 rdf:type schema:PublicationVolume
    176 N9bcc2d6f9f944437a0812bd7ac2d13f8 schema:name dimensions_id
    177 schema:value pub.1111606796
    178 rdf:type schema:PropertyValue
    179 Na8a190689385457f98ff42a9713d9648 rdf:first sg:person.0744241567.80
    180 rdf:rest Nb72760c500814ab6a3734007bb8cb039
    181 Nb1e96d5265ed4f8695fb6a0bf3f2939f rdf:first Nb4edd3931acd4446b60ff90639eac69d
    182 rdf:rest N11f37742d6334920a96534b5edf76126
    183 Nb4edd3931acd4446b60ff90639eac69d schema:affiliation grid-institutes:None
    184 schema:familyName Fröbel
    185 schema:givenName Sarah
    186 rdf:type schema:Person
    187 Nb72760c500814ab6a3734007bb8cb039 rdf:first sg:person.0676126367.38
    188 rdf:rest rdf:nil
    189 Ne9aa4fd7f8df469dbd8f5b308ceec5a0 schema:issueNumber 2
    190 rdf:type schema:PublicationIssue
    191 Nf276a466ae4341829eb2767c2d3fae5c schema:name doi
    192 schema:value 10.1007/s10681-019-2355-z
    193 rdf:type schema:PropertyValue
    194 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Biological Sciences
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Genetics
    199 rdf:type schema:DefinedTerm
    200 sg:journal.1028679 schema:issn 0014-2336
    201 1573-5060
    202 schema:name Euphytica
    203 schema:publisher Springer Nature
    204 rdf:type schema:Periodical
    205 sg:person.016504312415.61 schema:affiliation grid-institutes:None
    206 schema:familyName Dudenhöffer
    207 schema:givenName Jens
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504312415.61
    209 rdf:type schema:Person
    210 sg:person.0676126367.38 schema:affiliation grid-institutes:None
    211 schema:familyName Zyprian
    212 schema:givenName Eva
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676126367.38
    214 rdf:type schema:Person
    215 sg:person.0744241567.80 schema:affiliation grid-institutes:None
    216 schema:familyName Töpfer
    217 schema:givenName Reinhard
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744241567.80
    219 rdf:type schema:Person
    220 sg:pub.10.1007/bf00333403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021002164
    221 https://doi.org/10.1007/bf00333403
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00122-003-1445-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049116493
    224 https://doi.org/10.1007/s00122-003-1445-3
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00122-009-1167-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020261521
    227 https://doi.org/10.1007/s00122-009-1167-2
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00122-011-1695-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049424694
    230 https://doi.org/10.1007/s00122-011-1695-4
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00122-011-1703-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050112215
    233 https://doi.org/10.1007/s00122-011-1703-8
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00425-011-1461-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049700745
    236 https://doi.org/10.1007/s00425-011-1461-5
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s10142-012-0261-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049972498
    239 https://doi.org/10.1007/s10142-012-0261-8
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s11032-004-0261-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002210556
    242 https://doi.org/10.1007/s11032-004-0261-z
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s11032-007-9097-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009344109
    245 https://doi.org/10.1007/s11032-007-9097-7
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s11248-013-9725-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006049902
    248 https://doi.org/10.1007/s11248-013-9725-4
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/35081161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010228120
    251 https://doi.org/10.1038/35081161
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature05286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039464463
    254 https://doi.org/10.1038/nature05286
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature06203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015554783
    257 https://doi.org/10.1038/nature06203
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    260 https://doi.org/10.1038/nmeth.1226
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/srep46553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084896962
    263 https://doi.org/10.1038/srep46553
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/1471-2164-11-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035738727
    266 https://doi.org/10.1186/1471-2164-11-117
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/1471-2229-10-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011942255
    269 https://doi.org/10.1186/1471-2229-10-147
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/1471-2229-11-114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791173
    272 https://doi.org/10.1186/1471-2229-11-114
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/1471-2229-13-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052013437
    275 https://doi.org/10.1186/1471-2229-13-39
    276 rdf:type schema:CreativeWork
    277 grid-institutes:None schema:alternateName Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany
    278 schema:name Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany
    279 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...