Genome-wide SNP-based association mapping of resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Jingping Niu, Na Guo, Zhang Zhang, Zili Wang, Jianli Huang, Jinming Zhao, Fangguo Chang, Haitang Wang, Tuanjie Zhao, Han Xing

ABSTRACT

Phytophthora root rot (PRR) is among the most important soybean (Glycine max (L.) Merr.) diseases worldwide, and the host displays complex genetic resistance. A genome-wide association study was performed on 337 accessions from the Yangtze-Huai soybean breeding germplasm to identify resistance regions associated with PRR resistance using 60,862 high-quality single nucleotide polymorphisms markers. Twenty-six significant SNP-trait associations were detected on chromosomes 01 using a mixed linear model with the Q matrix and K matrix as covariates. In addition, twenty-six SNPs belonged to three adjacent haplotype blocks according to a linkage disequilibrium blocks analysis, and no previous studies have reported resistance loci in this 441 kb region. The real-time RT-PCR analysis of the possible candidate genes showed that two genes (Glyma01g32800 and Glyma01g32855) are likely involved in PRR resistance. Markers associated with resistance can contribute to marker-assisted selection in breeding programs. Analyses of candidate genes can lay a foundation for exploring the mechanism of P. sojae resistance. More... »

PAGES

187

References to SciGraph publications

  • 2018-03. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici in NATURE GENETICS
  • 2013-06. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar in THEORETICAL AND APPLIED GENETICS
  • 2018-03. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean in THEORETICAL AND APPLIED GENETICS
  • 2011-11. Genetic analysis and identification of DNA markers linked to a novel Phytophthorasojae resistance gene in the Japanese soybean cultivar Waseshiroge in EUPHYTICA
  • 2017-05. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing in THEORETICAL AND APPLIED GENETICS
  • 2014-08. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.) in JOURNAL OF GENETICS
  • 2016-02. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean in THEORETICAL AND APPLIED GENETICS
  • 2016-06. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr.] in MOLECULAR GENETICS AND GENOMICS
  • 2016-12. Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean in THEORETICAL AND APPLIED GENETICS
  • 2016-12. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea in BMC GENOMICS
  • 2017-01. Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat in THEORETICAL AND APPLIED GENETICS
  • 2005-03. Linkage disequilibrium and association studies in higher plants: Present status and future prospects in PLANT MOLECULAR BIOLOGY
  • 2016-12. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection in BMC GENETICS
  • 2010-01. Genome sequence of the palaeopolyploid soybean in NATURE
  • 2013-04. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841 in THEORETICAL AND APPLIED GENETICS
  • Journal

    TITLE

    Euphytica

    ISSUE

    10

    VOLUME

    214

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10681-018-2262-8

    DOI

    http://dx.doi.org/10.1007/s10681-018-2262-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107254783


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niu", 
            "givenName": "Jingping", 
            "id": "sg:person.01252313377.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252313377.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Na", 
            "id": "sg:person.01114637474.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114637474.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Zhang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zili", 
            "id": "sg:person.01320426577.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320426577.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Jianli", 
            "id": "sg:person.014771612033.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771612033.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Jinming", 
            "id": "sg:person.0725016346.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725016346.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Fangguo", 
            "id": "sg:person.015503016557.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015503016557.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Haitang", 
            "id": "sg:person.011270163554.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270163554.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Tuanjie", 
            "id": "sg:person.01015633266.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015633266.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Han", 
            "id": "sg:person.0613201012.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613201012.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.1016981108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001911998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-011-0525-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011088734", 
              "https://doi.org/10.1007/s10681-011-0525-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-011-0525-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011088734", 
              "https://doi.org/10.1007/s10681-011-0525-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12041-014-0383-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014912062", 
              "https://doi.org/10.1007/s12041-014-0383-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016441007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2918-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016532801", 
              "https://doi.org/10.1186/s12864-016-2918-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2918-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016532801", 
              "https://doi.org/10.1186/s12864-016-2918-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2777-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016672975", 
              "https://doi.org/10.1007/s00122-016-2777-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2777-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016672975", 
              "https://doi.org/10.1007/s00122-016-2777-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017534919", 
              "https://doi.org/10.1038/nature08670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017534919", 
              "https://doi.org/10.1038/nature08670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/8.19.4321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018245215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-013-2073-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022582966", 
              "https://doi.org/10.1007/s00122-013-2073-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1270/jsbbs.61.511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024971919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028217957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-016-0383-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028257329", 
              "https://doi.org/10.1186/s12863-016-0383-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-016-0383-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028257329", 
              "https://doi.org/10.1186/s12863-016-0383-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1190371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032676222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1190371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032676222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0169950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035223702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0523.2010.01794.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036207914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2784-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038770227", 
              "https://doi.org/10.1007/s00122-016-2784-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2784-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038770227", 
              "https://doi.org/10.1007/s00122-016-2784-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-005-0257-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170512", 
              "https://doi.org/10.1007/s11103-005-0257-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-015-2638-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041248063", 
              "https://doi.org/10.1007/s00122-015-2638-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0523.2010.01799.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041605175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2006.00373.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043402004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-015-1164-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046830118", 
              "https://doi.org/10.1007/s00438-015-1164-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0069799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051979628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-013-2040-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053416538", 
              "https://doi.org/10.1007/s00122-013-2040-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-013-2040-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053416538", 
              "https://doi.org/10.1007/s00122-013-2040-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/502802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058783626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pd-69-362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060083092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pdis.2003.87.3.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060097313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pdis.2003.87.3.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060097313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/php-2009-0401-01-rs", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060098493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/pdb.ip71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060409024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2869-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084018796", 
              "https://doi.org/10.1007/s00122-017-2869-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2869-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084018796", 
              "https://doi.org/10.1007/s00122-017-2869-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2017.00538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084743676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-3016-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092689687", 
              "https://doi.org/10.1007/s00122-017-3016-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0051-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100756002", 
              "https://doi.org/10.1038/s41588-018-0051-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10", 
        "datePublishedReg": "2018-10-01", 
        "description": "Phytophthora root rot (PRR) is among the most important soybean (Glycine max (L.) Merr.) diseases worldwide, and the host displays complex genetic resistance. A genome-wide association study was performed on 337 accessions from the Yangtze-Huai soybean breeding germplasm to identify resistance regions associated with PRR resistance using 60,862 high-quality single nucleotide polymorphisms markers. Twenty-six significant SNP-trait associations were detected on chromosomes 01 using a mixed linear model with the Q matrix and K matrix as covariates. In addition, twenty-six SNPs belonged to three adjacent haplotype blocks according to a linkage disequilibrium blocks analysis, and no previous studies have reported resistance loci in this 441 kb region. The real-time RT-PCR analysis of the possible candidate genes showed that two genes (Glyma01g32800 and Glyma01g32855) are likely involved in PRR resistance. Markers associated with resistance can contribute to marker-assisted selection in breeding programs. Analyses of candidate genes can lay a foundation for exploring the mechanism of P. sojae resistance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10681-018-2262-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028679", 
            "issn": [
              "0014-2336", 
              "1573-5060"
            ], 
            "name": "Euphytica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "214"
          }
        ], 
        "name": "Genome-wide SNP-based association mapping of resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.)", 
        "pagination": "187", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "448fb73624e4fe2babce7051535c3af60cb832dca88e42af2a86a0f2142e0867"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10681-018-2262-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107254783"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10681-018-2262-8", 
          "https://app.dimensions.ai/details/publication/pub.1107254783"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000565.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10681-018-2262-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10681-018-2262-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10681-018-2262-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10681-018-2262-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10681-018-2262-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10681-018-2262-8 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N72460863cfd0488f86e9a88fd422b844
    4 schema:citation sg:pub.10.1007/s00122-013-2040-x
    5 sg:pub.10.1007/s00122-013-2073-1
    6 sg:pub.10.1007/s00122-015-2638-2
    7 sg:pub.10.1007/s00122-016-2777-0
    8 sg:pub.10.1007/s00122-016-2784-1
    9 sg:pub.10.1007/s00122-017-2869-5
    10 sg:pub.10.1007/s00122-017-3016-z
    11 sg:pub.10.1007/s00438-015-1164-x
    12 sg:pub.10.1007/s10681-011-0525-8
    13 sg:pub.10.1007/s11103-005-0257-z
    14 sg:pub.10.1007/s12041-014-0383-y
    15 sg:pub.10.1038/nature08670
    16 sg:pub.10.1038/s41588-018-0051-x
    17 sg:pub.10.1186/s12863-016-0383-4
    18 sg:pub.10.1186/s12864-016-2918-5
    19 https://app.dimensions.ai/details/publication/pub.1074647594
    20 https://doi.org/10.1073/pnas.1016981108
    21 https://doi.org/10.1086/502802
    22 https://doi.org/10.1086/519795
    23 https://doi.org/10.1093/bioinformatics/btm308
    24 https://doi.org/10.1093/bioinformatics/btp336
    25 https://doi.org/10.1093/nar/8.19.4321
    26 https://doi.org/10.1094/pd-69-362
    27 https://doi.org/10.1094/pdis.2003.87.3.308
    28 https://doi.org/10.1094/php-2009-0401-01-rs
    29 https://doi.org/10.1101/pdb.ip71
    30 https://doi.org/10.1111/j.1364-3703.2006.00373.x
    31 https://doi.org/10.1111/j.1439-0523.2010.01794.x
    32 https://doi.org/10.1111/j.1439-0523.2010.01799.x
    33 https://doi.org/10.1126/science.1190371
    34 https://doi.org/10.1270/jsbbs.61.511
    35 https://doi.org/10.1371/journal.pone.0069799
    36 https://doi.org/10.1371/journal.pone.0169950
    37 https://doi.org/10.3389/fpls.2017.00538
    38 schema:datePublished 2018-10
    39 schema:datePublishedReg 2018-10-01
    40 schema:description Phytophthora root rot (PRR) is among the most important soybean (Glycine max (L.) Merr.) diseases worldwide, and the host displays complex genetic resistance. A genome-wide association study was performed on 337 accessions from the Yangtze-Huai soybean breeding germplasm to identify resistance regions associated with PRR resistance using 60,862 high-quality single nucleotide polymorphisms markers. Twenty-six significant SNP-trait associations were detected on chromosomes 01 using a mixed linear model with the Q matrix and K matrix as covariates. In addition, twenty-six SNPs belonged to three adjacent haplotype blocks according to a linkage disequilibrium blocks analysis, and no previous studies have reported resistance loci in this 441 kb region. The real-time RT-PCR analysis of the possible candidate genes showed that two genes (Glyma01g32800 and Glyma01g32855) are likely involved in PRR resistance. Markers associated with resistance can contribute to marker-assisted selection in breeding programs. Analyses of candidate genes can lay a foundation for exploring the mechanism of P. sojae resistance.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf N272a4b63e6c74f228f8daa3957cde3d4
    45 Ne68a2e9c756e484b8df696860e09b696
    46 sg:journal.1028679
    47 schema:name Genome-wide SNP-based association mapping of resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.)
    48 schema:pagination 187
    49 schema:productId N1af4c318193c4ad0be35b82be8f12c13
    50 Nae94f147e00140d8be72a3564c60332d
    51 Nf462dfead7a84cd19bdf9242caaf680e
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107254783
    53 https://doi.org/10.1007/s10681-018-2262-8
    54 schema:sdDatePublished 2019-04-10T20:55
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N4adcbb1376264dca92425bee1df489cb
    57 schema:url https://link.springer.com/10.1007%2Fs10681-018-2262-8
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N08ff97ba776e44f981bc6190a47b5661 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    62 schema:familyName Zhang
    63 schema:givenName Zhang
    64 rdf:type schema:Person
    65 N1af4c318193c4ad0be35b82be8f12c13 schema:name dimensions_id
    66 schema:value pub.1107254783
    67 rdf:type schema:PropertyValue
    68 N272a4b63e6c74f228f8daa3957cde3d4 schema:issueNumber 10
    69 rdf:type schema:PublicationIssue
    70 N2ff899fef1fe444c93792b388c736018 rdf:first N08ff97ba776e44f981bc6190a47b5661
    71 rdf:rest N9ec08ce344a84f9d887a597110116c3f
    72 N34d17015e8694354933cb56ac27d9d1a rdf:first sg:person.01114637474.40
    73 rdf:rest N2ff899fef1fe444c93792b388c736018
    74 N4adcbb1376264dca92425bee1df489cb schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N4d48dc08ffa8495ab5945d103e5b781d rdf:first sg:person.011270163554.35
    77 rdf:rest Nb75c42ca0f774dc5a4d9fc90199ade60
    78 N72460863cfd0488f86e9a88fd422b844 rdf:first sg:person.01252313377.02
    79 rdf:rest N34d17015e8694354933cb56ac27d9d1a
    80 N84e6bc1881c347678a653658dd9ba1e9 rdf:first sg:person.015503016557.21
    81 rdf:rest N4d48dc08ffa8495ab5945d103e5b781d
    82 N8e78ba8770c145979e66461768c0693f rdf:first sg:person.0613201012.27
    83 rdf:rest rdf:nil
    84 N9ec08ce344a84f9d887a597110116c3f rdf:first sg:person.01320426577.50
    85 rdf:rest Nc25e06b053684d5b88846b9eddf6c5a6
    86 Nae94f147e00140d8be72a3564c60332d schema:name readcube_id
    87 schema:value 448fb73624e4fe2babce7051535c3af60cb832dca88e42af2a86a0f2142e0867
    88 rdf:type schema:PropertyValue
    89 Nb4ab2cf3fd504b999a927b6791185391 rdf:first sg:person.0725016346.54
    90 rdf:rest N84e6bc1881c347678a653658dd9ba1e9
    91 Nb75c42ca0f774dc5a4d9fc90199ade60 rdf:first sg:person.01015633266.25
    92 rdf:rest N8e78ba8770c145979e66461768c0693f
    93 Nc25e06b053684d5b88846b9eddf6c5a6 rdf:first sg:person.014771612033.22
    94 rdf:rest Nb4ab2cf3fd504b999a927b6791185391
    95 Ne68a2e9c756e484b8df696860e09b696 schema:volumeNumber 214
    96 rdf:type schema:PublicationVolume
    97 Nf462dfead7a84cd19bdf9242caaf680e schema:name doi
    98 schema:value 10.1007/s10681-018-2262-8
    99 rdf:type schema:PropertyValue
    100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Biological Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Genetics
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1028679 schema:issn 0014-2336
    107 1573-5060
    108 schema:name Euphytica
    109 rdf:type schema:Periodical
    110 sg:person.01015633266.25 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    111 schema:familyName Zhao
    112 schema:givenName Tuanjie
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015633266.25
    114 rdf:type schema:Person
    115 sg:person.01114637474.40 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    116 schema:familyName Guo
    117 schema:givenName Na
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114637474.40
    119 rdf:type schema:Person
    120 sg:person.011270163554.35 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    121 schema:familyName Wang
    122 schema:givenName Haitang
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270163554.35
    124 rdf:type schema:Person
    125 sg:person.01252313377.02 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    126 schema:familyName Niu
    127 schema:givenName Jingping
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252313377.02
    129 rdf:type schema:Person
    130 sg:person.01320426577.50 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    131 schema:familyName Wang
    132 schema:givenName Zili
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320426577.50
    134 rdf:type schema:Person
    135 sg:person.014771612033.22 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    136 schema:familyName Huang
    137 schema:givenName Jianli
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771612033.22
    139 rdf:type schema:Person
    140 sg:person.015503016557.21 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    141 schema:familyName Chang
    142 schema:givenName Fangguo
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015503016557.21
    144 rdf:type schema:Person
    145 sg:person.0613201012.27 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    146 schema:familyName Xing
    147 schema:givenName Han
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613201012.27
    149 rdf:type schema:Person
    150 sg:person.0725016346.54 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    151 schema:familyName Zhao
    152 schema:givenName Jinming
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725016346.54
    154 rdf:type schema:Person
    155 sg:pub.10.1007/s00122-013-2040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053416538
    156 https://doi.org/10.1007/s00122-013-2040-x
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00122-013-2073-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022582966
    159 https://doi.org/10.1007/s00122-013-2073-1
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00122-015-2638-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041248063
    162 https://doi.org/10.1007/s00122-015-2638-2
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00122-016-2777-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016672975
    165 https://doi.org/10.1007/s00122-016-2777-0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00122-016-2784-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038770227
    168 https://doi.org/10.1007/s00122-016-2784-1
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00122-017-2869-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084018796
    171 https://doi.org/10.1007/s00122-017-2869-5
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00122-017-3016-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092689687
    174 https://doi.org/10.1007/s00122-017-3016-z
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s00438-015-1164-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046830118
    177 https://doi.org/10.1007/s00438-015-1164-x
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10681-011-0525-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011088734
    180 https://doi.org/10.1007/s10681-011-0525-8
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s11103-005-0257-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170512
    183 https://doi.org/10.1007/s11103-005-0257-z
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s12041-014-0383-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014912062
    186 https://doi.org/10.1007/s12041-014-0383-y
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature08670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017534919
    189 https://doi.org/10.1038/nature08670
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/s41588-018-0051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100756002
    192 https://doi.org/10.1038/s41588-018-0051-x
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/s12863-016-0383-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028257329
    195 https://doi.org/10.1186/s12863-016-0383-4
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1186/s12864-016-2918-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016532801
    198 https://doi.org/10.1186/s12864-016-2918-5
    199 rdf:type schema:CreativeWork
    200 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
    201 https://doi.org/10.1073/pnas.1016981108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001911998
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1086/502802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783626
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1093/bioinformatics/btm308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028217957
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/nar/8.19.4321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018245215
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1094/pd-69-362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060083092
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1094/pdis.2003.87.3.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060097313
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1094/php-2009-0401-01-rs schema:sameAs https://app.dimensions.ai/details/publication/pub.1060098493
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1101/pdb.ip71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060409024
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1111/j.1364-3703.2006.00373.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043402004
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1111/j.1439-0523.2010.01794.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036207914
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1111/j.1439-0523.2010.01799.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041605175
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1126/science.1190371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032676222
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1270/jsbbs.61.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024971919
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1371/journal.pone.0069799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051979628
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1371/journal.pone.0169950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035223702
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.3389/fpls.2017.00538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084743676
    236 rdf:type schema:CreativeWork
    237 https://www.grid.ac/institutes/grid.27871.3b schema:alternateName Nanjing Agricultural University
    238 schema:name National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, People’s Republic of China
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...