Identification of genic SSRs and construction of a SSR-based linkage map in Brassica juncea View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01

AUTHORS

Namrata Dhaka, Arundhati Mukhopadhyay, Kumar Paritosh, Vibha Gupta, Deepak Pental, Akshay K. Pradhan

ABSTRACT

Search for genic SSRs from transcriptome sequence data of Brassica juncea and B. nigra and from unigene databank of B. rapa resulted in identification of 20,529 SSRs from 330,827 gene sequences. Identified SSRs (named as unigene microsatellite; UGM) were characterized based on their number of repeats, type of motif and base composition. Primers were designed for 2118 UGMs after in silico polymorphism survey and were tested across 11 different genotypes of B. juncea and B. rapa for PCR amplification and polymorphism. It resulted in clear-cut amplification from 1993 UGMs of which 1319 UGMs showed polymorphism. It was observed that a priori in silico polymorphism survey helped in increasing the polymorphism percentage (6.1–13.2) by PCR amplification. We also report here the development of first SSR-based linkage map of Brassica juncea using a DH mapping population derived from F1 of the cross between the lines EH-2 and Pusajaikisan. The map consisted of 860 markers comprising 462 UGMs, 157 BAC-derived SSRs and 241 intron polymorphic markers and covered a total genetic length of 2073.6 cM. The study also reports an interesting observation of appearance of novel non-parental bands in the mapping population from 18 SSRs and 13 IP markers. Search of Arabidopsis genes orthologous to their primer sequences showed that 11 of such Arabidopsis genes code for proteins involved in various abiotic stresses. The highly transferable genic SSRs developed in the study would serve as valuable resources for comparative genome mapping, mapping of qualitative and quantitative traits, gene cloning and marker-assisted breeding in Brassica species. More... »

PAGES

15

References to SciGraph publications

Journal

TITLE

Euphytica

ISSUE

1

VOLUME

213

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10681-016-1814-z

DOI

http://dx.doi.org/10.1007/s10681-016-1814-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017429862


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhaka", 
        "givenName": "Namrata", 
        "id": "sg:person.012703270251.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012703270251.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukhopadhyay", 
        "givenName": "Arundhati", 
        "id": "sg:person.0674770440.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paritosh", 
        "givenName": "Kumar", 
        "id": "sg:person.01272052324.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272052324.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Vibha", 
        "id": "sg:person.0707106054.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India", 
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pental", 
        "givenName": "Deepak", 
        "id": "sg:person.01230565713.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India", 
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pradhan", 
        "givenName": "Akshay K.", 
        "id": "sg:person.01137563054.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00122-007-0610-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587413", 
          "https://doi.org/10.1007/s00122-007-0610-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0610-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587413", 
          "https://doi.org/10.1007/s00122-007-0610-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2006.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003424815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005748112", 
          "https://doi.org/10.1038/ncomms4930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006324818", 
          "https://doi.org/10.1186/1471-2164-15-396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1100394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008962620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11105-012-0530-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010109991", 
          "https://doi.org/10.1007/s11105-012-0530-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/apps.1500025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010113015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011621370", 
          "https://doi.org/10.1186/1471-2164-9-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004609", 
          "https://doi.org/10.1038/nrg1348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004609", 
          "https://doi.org/10.1038/nrg1348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-11-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012299438", 
          "https://doi.org/10.1186/1471-2229-11-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-002-1083-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012983945", 
          "https://doi.org/10.1007/s00122-002-1083-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1100347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014303062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015011855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00167107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017261591", 
          "https://doi.org/10.1007/bf00167107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00167107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017261591", 
          "https://doi.org/10.1007/bf00167107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017786519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dsr017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018092092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018317882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019961258", 
          "https://doi.org/10.1186/1471-2164-15-149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-12-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020137870", 
          "https://doi.org/10.1186/1471-2229-12-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-0511-8_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020790088", 
          "https://doi.org/10.1007/978-94-011-0511-8_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-016-2731-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021827036", 
          "https://doi.org/10.1007/s00122-016-2731-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2007.01681.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022541176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2008/412696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026713619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-genet-072610-155046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028183527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-s3-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028455320", 
          "https://doi.org/10.1186/1471-2164-11-s3-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0027-5107(03)00006-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034157512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035519342", 
          "https://doi.org/10.1038/ng.919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-016-2811-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036327379", 
          "https://doi.org/10.1007/s00122-016-2811-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-016-2811-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036327379", 
          "https://doi.org/10.1007/s00122-016-2811-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dst040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043671346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043753091", 
          "https://doi.org/10.1038/nrg1249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043753091", 
          "https://doi.org/10.1038/nrg1249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-011-0636-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045689541", 
          "https://doi.org/10.1007/s00438-011-0636-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1415-47572006000200018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046465212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-012-2027-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048555177", 
          "https://doi.org/10.1007/s00122-012-2027-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049898223", 
          "https://doi.org/10.1186/1471-2164-10-432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050579230", 
          "https://doi.org/10.1186/1471-2105-10-421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053001947", 
          "https://doi.org/10.1038/ng.3657"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "Search for genic SSRs from transcriptome sequence data of Brassica juncea and B. nigra and from unigene databank of B. rapa resulted in identification of 20,529 SSRs from 330,827 gene sequences. Identified SSRs (named as unigene microsatellite; UGM) were characterized based on their number of repeats, type of motif and base composition. Primers were designed for 2118 UGMs after in silico polymorphism survey and were tested across 11 different genotypes of B. juncea and B. rapa for PCR amplification and polymorphism. It resulted in clear-cut amplification from 1993 UGMs of which 1319 UGMs showed polymorphism. It was observed that a priori in silico polymorphism survey helped in increasing the polymorphism percentage (6.1\u201313.2) by PCR amplification. We also report here the development of first SSR-based linkage map of Brassica juncea using a DH mapping population derived from F1 of the cross between the lines EH-2 and Pusajaikisan. The map consisted of 860 markers comprising 462 UGMs, 157 BAC-derived SSRs and 241 intron polymorphic markers and covered a total genetic length of 2073.6 cM. The study also reports an interesting observation of appearance of novel non-parental bands in the mapping population from 18 SSRs and 13 IP markers. Search of Arabidopsis genes orthologous to their primer sequences showed that 11 of such Arabidopsis genes code for proteins involved in various abiotic stresses. The highly transferable genic SSRs developed in the study would serve as valuable resources for comparative genome mapping, mapping of qualitative and quantitative traits, gene cloning and marker-assisted breeding in Brassica species.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10681-016-1814-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028679", 
        "issn": [
          "0014-2336", 
          "1573-5060"
        ], 
        "name": "Euphytica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "213"
      }
    ], 
    "name": "Identification of genic SSRs and construction of a SSR-based linkage map in Brassica juncea", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "530ac5b96f1d15f1ec423558b4a8dba13519001b72018f463319459e2a653405"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10681-016-1814-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017429862"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10681-016-1814-z", 
      "https://app.dimensions.ai/details/publication/pub.1017429862"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87083_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10681-016-1814-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10681-016-1814-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10681-016-1814-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10681-016-1814-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10681-016-1814-z'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10681-016-1814-z schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ne053a8a0820749ce9a3a7b63df5fa745
4 schema:citation sg:pub.10.1007/978-94-011-0511-8_12
5 sg:pub.10.1007/bf00167107
6 sg:pub.10.1007/s00122-002-1083-1
7 sg:pub.10.1007/s00122-007-0610-5
8 sg:pub.10.1007/s00122-012-2027-z
9 sg:pub.10.1007/s00122-016-2731-1
10 sg:pub.10.1007/s00122-016-2811-2
11 sg:pub.10.1007/s00438-011-0636-x
12 sg:pub.10.1007/s11105-012-0530-7
13 sg:pub.10.1038/ncomms4930
14 sg:pub.10.1038/ng.3657
15 sg:pub.10.1038/ng.919
16 sg:pub.10.1038/nrg1249
17 sg:pub.10.1038/nrg1348
18 sg:pub.10.1186/1471-2105-10-421
19 sg:pub.10.1186/1471-2164-10-432
20 sg:pub.10.1186/1471-2164-11-s3-s1
21 sg:pub.10.1186/1471-2164-15-149
22 sg:pub.10.1186/1471-2164-15-396
23 sg:pub.10.1186/1471-2164-9-113
24 sg:pub.10.1186/1471-2229-11-15
25 sg:pub.10.1186/1471-2229-12-80
26 https://doi.org/10.1016/j.tibtech.2004.11.005
27 https://doi.org/10.1016/j.tig.2006.03.005
28 https://doi.org/10.1016/s0027-5107(03)00006-x
29 https://doi.org/10.1093/dnares/dsr017
30 https://doi.org/10.1093/dnares/dst040
31 https://doi.org/10.1093/molbev/msh073
32 https://doi.org/10.1111/j.1471-8286.2007.01681.x
33 https://doi.org/10.1126/science.1253435
34 https://doi.org/10.1146/annurev-genet-072610-155046
35 https://doi.org/10.1155/2008/412696
36 https://doi.org/10.1590/s1415-47572006000200018
37 https://doi.org/10.3732/ajb.1100347
38 https://doi.org/10.3732/ajb.1100394
39 https://doi.org/10.3732/apps.1500025
40 schema:datePublished 2017-01
41 schema:datePublishedReg 2017-01-01
42 schema:description Search for genic SSRs from transcriptome sequence data of Brassica juncea and B. nigra and from unigene databank of B. rapa resulted in identification of 20,529 SSRs from 330,827 gene sequences. Identified SSRs (named as unigene microsatellite; UGM) were characterized based on their number of repeats, type of motif and base composition. Primers were designed for 2118 UGMs after in silico polymorphism survey and were tested across 11 different genotypes of B. juncea and B. rapa for PCR amplification and polymorphism. It resulted in clear-cut amplification from 1993 UGMs of which 1319 UGMs showed polymorphism. It was observed that a priori in silico polymorphism survey helped in increasing the polymorphism percentage (6.1–13.2) by PCR amplification. We also report here the development of first SSR-based linkage map of Brassica juncea using a DH mapping population derived from F1 of the cross between the lines EH-2 and Pusajaikisan. The map consisted of 860 markers comprising 462 UGMs, 157 BAC-derived SSRs and 241 intron polymorphic markers and covered a total genetic length of 2073.6 cM. The study also reports an interesting observation of appearance of novel non-parental bands in the mapping population from 18 SSRs and 13 IP markers. Search of Arabidopsis genes orthologous to their primer sequences showed that 11 of such Arabidopsis genes code for proteins involved in various abiotic stresses. The highly transferable genic SSRs developed in the study would serve as valuable resources for comparative genome mapping, mapping of qualitative and quantitative traits, gene cloning and marker-assisted breeding in Brassica species.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N13a93b287f5c426085473746dba30f34
47 N8669c873adb3498783263a51e0fa009d
48 sg:journal.1028679
49 schema:name Identification of genic SSRs and construction of a SSR-based linkage map in Brassica juncea
50 schema:pagination 15
51 schema:productId N313752b3efb040bd8b63b2d1ba961ede
52 N36cccda0943a4ed69c07d34b4830f32b
53 Naffd1c13f8f1467cbf5cf8570aa6a191
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017429862
55 https://doi.org/10.1007/s10681-016-1814-z
56 schema:sdDatePublished 2019-04-11T12:22
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nad70606b6d794b87a0a1399dd5f667bf
59 schema:url https://link.springer.com/10.1007%2Fs10681-016-1814-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N13a93b287f5c426085473746dba30f34 schema:volumeNumber 213
64 rdf:type schema:PublicationVolume
65 N26d34cb42fdd40458ae4aaee515b32ce rdf:first sg:person.0674770440.54
66 rdf:rest N8a681c1716ce47edb80076189dd750b1
67 N313752b3efb040bd8b63b2d1ba961ede schema:name doi
68 schema:value 10.1007/s10681-016-1814-z
69 rdf:type schema:PropertyValue
70 N36cccda0943a4ed69c07d34b4830f32b schema:name readcube_id
71 schema:value 530ac5b96f1d15f1ec423558b4a8dba13519001b72018f463319459e2a653405
72 rdf:type schema:PropertyValue
73 N3f1a0490771f4b0485df99996a847a3b rdf:first sg:person.01137563054.00
74 rdf:rest rdf:nil
75 N83ca434746144d49b241b9a15ff27a4a rdf:first sg:person.0707106054.43
76 rdf:rest Nadd1fa0b874f4f2eba9d4be5b47f3f81
77 N8669c873adb3498783263a51e0fa009d schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N8a681c1716ce47edb80076189dd750b1 rdf:first sg:person.01272052324.52
80 rdf:rest N83ca434746144d49b241b9a15ff27a4a
81 Nad70606b6d794b87a0a1399dd5f667bf schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nadd1fa0b874f4f2eba9d4be5b47f3f81 rdf:first sg:person.01230565713.24
84 rdf:rest N3f1a0490771f4b0485df99996a847a3b
85 Naffd1c13f8f1467cbf5cf8570aa6a191 schema:name dimensions_id
86 schema:value pub.1017429862
87 rdf:type schema:PropertyValue
88 Ne053a8a0820749ce9a3a7b63df5fa745 rdf:first sg:person.012703270251.10
89 rdf:rest N26d34cb42fdd40458ae4aaee515b32ce
90 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
91 schema:name Biological Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
94 schema:name Genetics
95 rdf:type schema:DefinedTerm
96 sg:journal.1028679 schema:issn 0014-2336
97 1573-5060
98 schema:name Euphytica
99 rdf:type schema:Periodical
100 sg:person.01137563054.00 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
101 schema:familyName Pradhan
102 schema:givenName Akshay K.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00
104 rdf:type schema:Person
105 sg:person.01230565713.24 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
106 schema:familyName Pental
107 schema:givenName Deepak
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24
109 rdf:type schema:Person
110 sg:person.012703270251.10 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
111 schema:familyName Dhaka
112 schema:givenName Namrata
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012703270251.10
114 rdf:type schema:Person
115 sg:person.01272052324.52 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
116 schema:familyName Paritosh
117 schema:givenName Kumar
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272052324.52
119 rdf:type schema:Person
120 sg:person.0674770440.54 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
121 schema:familyName Mukhopadhyay
122 schema:givenName Arundhati
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54
124 rdf:type schema:Person
125 sg:person.0707106054.43 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
126 schema:familyName Gupta
127 schema:givenName Vibha
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43
129 rdf:type schema:Person
130 sg:pub.10.1007/978-94-011-0511-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020790088
131 https://doi.org/10.1007/978-94-011-0511-8_12
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf00167107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017261591
134 https://doi.org/10.1007/bf00167107
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00122-002-1083-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012983945
137 https://doi.org/10.1007/s00122-002-1083-1
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00122-007-0610-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587413
140 https://doi.org/10.1007/s00122-007-0610-5
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00122-012-2027-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048555177
143 https://doi.org/10.1007/s00122-012-2027-z
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00122-016-2731-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021827036
146 https://doi.org/10.1007/s00122-016-2731-1
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00122-016-2811-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036327379
149 https://doi.org/10.1007/s00122-016-2811-2
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00438-011-0636-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045689541
152 https://doi.org/10.1007/s00438-011-0636-x
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11105-012-0530-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010109991
155 https://doi.org/10.1007/s11105-012-0530-7
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ncomms4930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005748112
158 https://doi.org/10.1038/ncomms4930
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ng.3657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053001947
161 https://doi.org/10.1038/ng.3657
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035519342
164 https://doi.org/10.1038/ng.919
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nrg1249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043753091
167 https://doi.org/10.1038/nrg1249
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nrg1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012004609
170 https://doi.org/10.1038/nrg1348
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
173 https://doi.org/10.1186/1471-2105-10-421
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2164-10-432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049898223
176 https://doi.org/10.1186/1471-2164-10-432
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2164-11-s3-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028455320
179 https://doi.org/10.1186/1471-2164-11-s3-s1
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2164-15-149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019961258
182 https://doi.org/10.1186/1471-2164-15-149
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2164-15-396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006324818
185 https://doi.org/10.1186/1471-2164-15-396
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1471-2164-9-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011621370
188 https://doi.org/10.1186/1471-2164-9-113
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2229-11-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012299438
191 https://doi.org/10.1186/1471-2229-11-15
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/1471-2229-12-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020137870
194 https://doi.org/10.1186/1471-2229-12-80
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.tibtech.2004.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015011855
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.tig.2006.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003424815
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0027-5107(03)00006-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034157512
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/dnares/dsr017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018092092
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/dnares/dst040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043671346
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/molbev/msh073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017786519
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.1471-8286.2007.01681.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022541176
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1253435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018317882
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1146/annurev-genet-072610-155046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028183527
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1155/2008/412696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026713619
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1590/s1415-47572006000200018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046465212
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3732/ajb.1100347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014303062
219 rdf:type schema:CreativeWork
220 https://doi.org/10.3732/ajb.1100394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008962620
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3732/apps.1500025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010113015
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
225 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India
226 Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...