Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07-04

AUTHORS

Silvio Schueler, Katharina Heinke Schlünzen

ABSTRACT

We present the extension and application of the mesoscale atmospheric meteorology model METRAS for dispersion of oak pollen. We incorporated functions for pollen emission, pollen viability and pollen deposition into METRAS and simulated pollen dispersal on a scale of up to 200 km. The basis of the simulations is a real landscape structure that includes topography, land use, and the location and size of oak stands. We simulated the oak pollen dispersion of one single oak stand with an estimated annual pollen production of 1 billion pollen grains/m2 forest surface on two exemplary days of the flowering season in 2000. Depending on the meteorological situation of the simulated days, a pollen cloud with about 10 pollen/m3 may extend up to 30 km from the source. Downstream of the oak stand, approximately 1,000 pollen/m2 deposited up to a distance of 25 km, and lower amounts of pollen deposited up to 100 km away. These values of pollen concentration and deposition lay within the range of published field studies. Overall, it is shown that mesoscale atmospheric models are applicable to simulate pollen dispersal on the landscape level. More... »

PAGES

179

References to SciGraph publications

  • 1937-07. Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftströmungen in PLANTA
  • 1997-06. The release of genetically modified grasses. Part 2: the influence of wind direction on pollen dispersal in THEORETICAL AND APPLIED GENETICS
  • 2003-04-11. Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: interaction of life cycle, pollen flow and seed long-distance dispersal in HEREDITY
  • 1999-01. Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions in THE BOTANICAL REVIEW
  • 2000-04. Modelling the spread of pollen from Lolium perenne. The implications for the release of wind-pollinated transgenics in THEORETICAL AND APPLIED GENETICS
  • 2003-02. Flow and Transport in the Obstacle Layer: First Results of the Micro-Scale Model MITRAS in JOURNAL OF ATMOSPHERIC CHEMISTRY
  • 2006-01-01. An Approach to Simulation of Long-Range Atmospheric Transport of Natural Allergens: An Example of Birch Pollen in AIR POLLUTION MODELING AND ITS APPLICATION XVII
  • 1999-09. The atmospheric impact on fluxes of nitrogen, POPs and energy in the German Bight in OCEAN DYNAMICS
  • 2001-03. Challenges and opportunities for conservation of forest genetic resources in EUPHYTICA
  • 1974. Gene Flow in Seed Plants in EVOLUTIONARY BIOLOGY
  • 2004-03. Numerical modelling of pollen dispersion on the regional scale in AEROBIOLOGIA
  • 1996-04. Modelling the arctic convective boundary-layer with different turbulence parameterizations in BOUNDARY-LAYER METEOROLOGY
  • 2004-10-23. Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow in TREES
  • 2002-03. An automated system for surveying and forecasting Olea pollen dispersion in AEROBIOLOGIA
  • 1999-11-01. Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci in HEREDITY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10666-006-9044-8

    DOI

    http://dx.doi.org/10.1007/s10666-006-9044-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000439563


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Hauptstr. 7, A-1140, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.425121.1", 
              "name": [
                "Institute for Forest Genetics and Forest Tree Breeding, Federal Research Centre for Forestry and Forest Products, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany", 
                "Department of Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Hauptstr. 7, A-1140, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schueler", 
            "givenName": "Silvio", 
            "id": "sg:person.01006347201.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006347201.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Meteorological Institute, Center for Marine and Climate Research, University of Hamburg, Bundesstra\u00dfe 55, D-20146, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9026.d", 
              "name": [
                "Meteorological Institute, Center for Marine and Climate Research, University of Hamburg, Bundesstra\u00dfe 55, D-20146, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schl\u00fcnzen", 
            "givenName": "Katharina Heinke", 
            "id": "sg:person.012560545423.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00120077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020860771", 
              "https://doi.org/10.1007/bf00120077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-68854-1_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052488729", 
              "https://doi.org/10.1007/978-0-387-68854-1_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022420130032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038947453", 
              "https://doi.org/10.1023/a:1022420130032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019778834", 
              "https://doi.org/10.1007/s001220051378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02856557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028391718", 
              "https://doi.org/10.1007/bf02856557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:aero.0000022984.51588.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016661765", 
              "https://doi.org/10.1023/b:aero.0000022984.51588.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00468-004-0376-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011946050", 
              "https://doi.org/10.1007/s00468-004-0376-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032609981", 
              "https://doi.org/10.1007/s001220050508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02764172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004634585", 
              "https://doi.org/10.1007/bf02764172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.hdy.6886220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029988598", 
              "https://doi.org/10.1038/sj.hdy.6886220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014997310925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006180618", 
              "https://doi.org/10.1023/a:1014997310925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.hdy.6800243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017833003", 
              "https://doi.org/10.1038/sj.hdy.6800243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01939376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029101925", 
              "https://doi.org/10.1007/bf01939376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1004150525384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010312242", 
              "https://doi.org/10.1023/a:1004150525384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-6944-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041995528", 
              "https://doi.org/10.1007/978-1-4615-6944-2_5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-07-04", 
        "datePublishedReg": "2006-07-04", 
        "description": "We present the extension and application of the mesoscale atmospheric meteorology model METRAS for dispersion of oak pollen. We incorporated functions for pollen emission, pollen viability and pollen deposition into METRAS and simulated pollen dispersal on a scale of up to 200\u00a0km. The basis of the simulations is a real landscape structure that includes topography, land use, and the location and size of oak stands. We simulated the oak pollen dispersion of one single oak stand with an estimated annual pollen production of 1 billion pollen grains/m2 forest surface on two exemplary days of the flowering season in 2000. Depending on the meteorological situation of the simulated days, a pollen cloud with about 10 pollen/m3 may extend up to 30\u00a0km from the source. Downstream of the oak stand, approximately 1,000 pollen/m2 deposited up to a distance of 25\u00a0km, and lower amounts of pollen deposited up to 100\u00a0km away. These values of pollen concentration and deposition lay within the range of published field studies. Overall, it is shown that mesoscale atmospheric models are applicable to simulate pollen dispersal on the landscape level.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10666-006-9044-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136031", 
            "issn": [
              "1420-2026", 
              "1573-2967"
            ], 
            "name": "Environmental Modeling & Assessment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "oak stands", 
          "pollen dispersal", 
          "landscape level", 
          "pollen production", 
          "forest surface", 
          "pollen viability", 
          "landscape structure", 
          "land use", 
          "pollen clouds", 
          "stands", 
          "field study", 
          "pollen emission", 
          "pollen deposition", 
          "dispersal", 
          "oak pollen", 
          "pollen dispersion", 
          "pollen", 
          "season", 
          "low amounts", 
          "pollen concentrations", 
          "production", 
          "m3", 
          "m2", 
          "levels", 
          "emission", 
          "viability", 
          "days", 
          "source", 
          "topography", 
          "use", 
          "amount", 
          "location", 
          "scale", 
          "applications", 
          "concentration", 
          "deposition", 
          "range", 
          "size", 
          "distance", 
          "basis", 
          "situation", 
          "values", 
          "study", 
          "downstream", 
          "model", 
          "extension", 
          "structure", 
          "surface", 
          "atmospheric model", 
          "simulations", 
          "function", 
          "dispersion", 
          "cloud", 
          "mesoscale atmospheric model", 
          "annual pollen production", 
          "meteorological situations", 
          "pollen/m3", 
          "METRAS", 
          "exemplary day", 
          "mesoscale atmospheric meteorology model METRAS", 
          "atmospheric meteorology model METRAS", 
          "meteorology model METRAS", 
          "model METRAS", 
          "real landscape structure", 
          "oak pollen dispersion", 
          "single oak stand", 
          "pollen grains/m2 forest surface", 
          "grains/m2 forest surface", 
          "m2 forest surface", 
          "pollen/m2", 
          "oak pollen dispersal"
        ], 
        "name": "Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model", 
        "pagination": "179", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000439563"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10666-006-9044-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10666-006-9044-8", 
          "https://app.dimensions.ai/details/publication/pub.1000439563"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_413.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10666-006-9044-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10666-006-9044-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10666-006-9044-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10666-006-9044-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10666-006-9044-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    200 TRIPLES      22 PREDICATES      111 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10666-006-9044-8 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N3bbe55d5516841788a32c10d79b7971a
    4 schema:citation sg:pub.10.1007/978-0-387-68854-1_36
    5 sg:pub.10.1007/978-1-4615-6944-2_5
    6 sg:pub.10.1007/bf00120077
    7 sg:pub.10.1007/bf01939376
    8 sg:pub.10.1007/bf02764172
    9 sg:pub.10.1007/bf02856557
    10 sg:pub.10.1007/s001220050508
    11 sg:pub.10.1007/s001220051378
    12 sg:pub.10.1007/s00468-004-0376-1
    13 sg:pub.10.1023/a:1004150525384
    14 sg:pub.10.1023/a:1014997310925
    15 sg:pub.10.1023/a:1022420130032
    16 sg:pub.10.1023/b:aero.0000022984.51588.30
    17 sg:pub.10.1038/sj.hdy.6800243
    18 sg:pub.10.1038/sj.hdy.6886220
    19 schema:datePublished 2006-07-04
    20 schema:datePublishedReg 2006-07-04
    21 schema:description We present the extension and application of the mesoscale atmospheric meteorology model METRAS for dispersion of oak pollen. We incorporated functions for pollen emission, pollen viability and pollen deposition into METRAS and simulated pollen dispersal on a scale of up to 200 km. The basis of the simulations is a real landscape structure that includes topography, land use, and the location and size of oak stands. We simulated the oak pollen dispersion of one single oak stand with an estimated annual pollen production of 1 billion pollen grains/m2 forest surface on two exemplary days of the flowering season in 2000. Depending on the meteorological situation of the simulated days, a pollen cloud with about 10 pollen/m3 may extend up to 30 km from the source. Downstream of the oak stand, approximately 1,000 pollen/m2 deposited up to a distance of 25 km, and lower amounts of pollen deposited up to 100 km away. These values of pollen concentration and deposition lay within the range of published field studies. Overall, it is shown that mesoscale atmospheric models are applicable to simulate pollen dispersal on the landscape level.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N4ec233c73571487b9b6b388e0ded9714
    26 Na3c175ecd3b04308939e156503ab1601
    27 sg:journal.1136031
    28 schema:keywords METRAS
    29 amount
    30 annual pollen production
    31 applications
    32 atmospheric meteorology model METRAS
    33 atmospheric model
    34 basis
    35 cloud
    36 concentration
    37 days
    38 deposition
    39 dispersal
    40 dispersion
    41 distance
    42 downstream
    43 emission
    44 exemplary day
    45 extension
    46 field study
    47 forest surface
    48 function
    49 grains/m2 forest surface
    50 land use
    51 landscape level
    52 landscape structure
    53 levels
    54 location
    55 low amounts
    56 m2
    57 m2 forest surface
    58 m3
    59 mesoscale atmospheric meteorology model METRAS
    60 mesoscale atmospheric model
    61 meteorological situations
    62 meteorology model METRAS
    63 model
    64 model METRAS
    65 oak pollen
    66 oak pollen dispersal
    67 oak pollen dispersion
    68 oak stands
    69 pollen
    70 pollen clouds
    71 pollen concentrations
    72 pollen deposition
    73 pollen dispersal
    74 pollen dispersion
    75 pollen emission
    76 pollen grains/m2 forest surface
    77 pollen production
    78 pollen viability
    79 pollen/m2
    80 pollen/m3
    81 production
    82 range
    83 real landscape structure
    84 scale
    85 season
    86 simulations
    87 single oak stand
    88 situation
    89 size
    90 source
    91 stands
    92 structure
    93 study
    94 surface
    95 topography
    96 use
    97 values
    98 viability
    99 schema:name Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model
    100 schema:pagination 179
    101 schema:productId N222a1c9d5a3647bfab51af8a8606cd5e
    102 Na152a250310449c5b7fc76b89ad6cdb4
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000439563
    104 https://doi.org/10.1007/s10666-006-9044-8
    105 schema:sdDatePublished 2021-11-01T18:08
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher Na26ba78bb937443e851747d55de953b6
    108 schema:url https://doi.org/10.1007/s10666-006-9044-8
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N222a1c9d5a3647bfab51af8a8606cd5e schema:name dimensions_id
    113 schema:value pub.1000439563
    114 rdf:type schema:PropertyValue
    115 N26c4e53804d541e2a8fd369fb7f1b706 rdf:first sg:person.012560545423.41
    116 rdf:rest rdf:nil
    117 N3bbe55d5516841788a32c10d79b7971a rdf:first sg:person.01006347201.75
    118 rdf:rest N26c4e53804d541e2a8fd369fb7f1b706
    119 N4ec233c73571487b9b6b388e0ded9714 schema:volumeNumber 11
    120 rdf:type schema:PublicationVolume
    121 Na152a250310449c5b7fc76b89ad6cdb4 schema:name doi
    122 schema:value 10.1007/s10666-006-9044-8
    123 rdf:type schema:PropertyValue
    124 Na26ba78bb937443e851747d55de953b6 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 Na3c175ecd3b04308939e156503ab1601 schema:issueNumber 3
    127 rdf:type schema:PublicationIssue
    128 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Physical Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Other Physical Sciences
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1136031 schema:issn 1420-2026
    135 1573-2967
    136 schema:name Environmental Modeling & Assessment
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.01006347201.75 schema:affiliation grid-institutes:grid.425121.1
    140 schema:familyName Schueler
    141 schema:givenName Silvio
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006347201.75
    143 rdf:type schema:Person
    144 sg:person.012560545423.41 schema:affiliation grid-institutes:grid.9026.d
    145 schema:familyName Schlünzen
    146 schema:givenName Katharina Heinke
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41
    148 rdf:type schema:Person
    149 sg:pub.10.1007/978-0-387-68854-1_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052488729
    150 https://doi.org/10.1007/978-0-387-68854-1_36
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-1-4615-6944-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041995528
    153 https://doi.org/10.1007/978-1-4615-6944-2_5
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bf00120077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020860771
    156 https://doi.org/10.1007/bf00120077
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bf01939376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029101925
    159 https://doi.org/10.1007/bf01939376
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/bf02764172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004634585
    162 https://doi.org/10.1007/bf02764172
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bf02856557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028391718
    165 https://doi.org/10.1007/bf02856557
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s001220050508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032609981
    168 https://doi.org/10.1007/s001220050508
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s001220051378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019778834
    171 https://doi.org/10.1007/s001220051378
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00468-004-0376-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011946050
    174 https://doi.org/10.1007/s00468-004-0376-1
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1023/a:1004150525384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010312242
    177 https://doi.org/10.1023/a:1004150525384
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1023/a:1014997310925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006180618
    180 https://doi.org/10.1023/a:1014997310925
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1023/a:1022420130032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038947453
    183 https://doi.org/10.1023/a:1022420130032
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1023/b:aero.0000022984.51588.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016661765
    186 https://doi.org/10.1023/b:aero.0000022984.51588.30
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/sj.hdy.6800243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017833003
    189 https://doi.org/10.1038/sj.hdy.6800243
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/sj.hdy.6886220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029988598
    192 https://doi.org/10.1038/sj.hdy.6886220
    193 rdf:type schema:CreativeWork
    194 grid-institutes:grid.425121.1 schema:alternateName Department of Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Hauptstr. 7, A-1140, Vienna, Austria
    195 schema:name Department of Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Hauptstr. 7, A-1140, Vienna, Austria
    196 Institute for Forest Genetics and Forest Tree Breeding, Federal Research Centre for Forestry and Forest Products, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany
    197 rdf:type schema:Organization
    198 grid-institutes:grid.9026.d schema:alternateName Meteorological Institute, Center for Marine and Climate Research, University of Hamburg, Bundesstraße 55, D-20146, Hamburg, Germany
    199 schema:name Meteorological Institute, Center for Marine and Climate Research, University of Hamburg, Bundesstraße 55, D-20146, Hamburg, Germany
    200 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...